cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283758 Numbers whose sum of divisors is equal to the product of the number of divisors of their k first powers, for some k.

This page as a plain text file.
%I A283758 #11 Mar 21 2017 04:44:07
%S A283758 5,22,23,102,110,382,497,510,517,527,719,1436,4509,5039,6906,8426,
%T A283758 8786,9051,9598,9741,9951,10011,10505,10795,11005,11431,11501,11891,
%U A283758 11995,12121,13661,13777,13891,13919,14101,14129,14141,28780,31636,32572,32756,33028,33356
%N A283758 Numbers whose sum of divisors is equal to the product of the number of divisors of their k first powers, for some k.
%C A283758 Values of k: {2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 5, 3, 3, 6, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...}. - _Michael De Vlieger_, Mar 17 2017
%H A283758 Paolo P. Lava, <a href="/A283758/b283758.txt">Table of n, a(n) for n = 1..150</a>
%e A283758 sigma(382) = 576 and d(382) * d(382^2) * d(382^3) = 4 * 9 * 16 = 576;
%e A283758 sigma(9598) = 14400 and d(9598) * d(9598^2) * d(9598^3) * d(9598^4) = 4 * 9 * 16 * 25 = 14400.
%p A283758 with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=1; k:=0; while a<sigma(n) do k:=k+1; a:=a*tau(n^k); if sigma(n)=a then print(n); break; fi; od; od; end: P(10^5);
%t A283758 Select[Range[2, 40000], Module[{k = 1, d = DivisorSigma[1, #], b}, While[Set[b, Product[DivisorSigma[0, #^j], {j, k}]] < d, k++]; If[b == d, True, False]] &] (* _Michael De Vlieger_, Mar 17 2017 *)
%Y A283758 Cf. A000005, A000203, A270389, A270713, A275660, A283757, A283759.
%K A283758 nonn
%O A283758 1,1
%A A283758 _Paolo P. Lava_, Mar 16 2017