cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283759 Numbers whose Euler totient function is equal to the product of the number of divisors of their k first powers, for some k.

This page as a plain text file.
%I A283759 #9 Mar 21 2017 04:44:28
%S A283759 3,7,8,10,18,24,30,57,74,344,399,494,518,629,654,679,1154,2408,2989,
%T A283759 3048,3175,3458,3789,4218,4578,4890,5022,7668,10602,13720,14647,14701,
%U A283759 14837,15613,16133,17563,17945,18335,19608,20195,20358,21243,21336,21423,22083,22503
%N A283759 Numbers whose Euler totient function is equal to the product of the number of divisors of their k first powers, for some k.
%C A283759 Values of k: {1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, ...}. - _Michael De Vlieger_, Mar 17 2017
%H A283759 Paolo P. Lava, <a href="/A283759/b283759.txt">Table of n, a(n) for n = 1..150</a>
%e A283759 phi(629) = 576 and d(629) * d(629^2) * d(629^3) = 4 * 9 * 16= 576;
%e A283759 phi(14647) = 14400 and d(14647) * d(14647^2) * d(14647^3) * d(14647^4) = 4 * 9 * 16 * 25 = 14400.
%p A283759 with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=1; k:=0; while a<phi(n) do k:=k+1; a:=a*tau(n^k); if phi(n)=a then print(n); break; fi; od; od; end: P(10^5);
%t A283759 Select[Range[2, 25000], Module[{k = 1, e = EulerPhi@ #, b}, While[Set[b, Product[DivisorSigma[0, #^j], {j, k}]] < e, k++]; If[b == e, True, False]] &] (* _Michael De Vlieger_, Mar 17 2017 *)
%Y A283759 Cf. A000005, A000010, A270389, A270713, A275660, A283757, A283758.
%K A283759 nonn
%O A283759 1,1
%A A283759 _Paolo P. Lava_, Mar 16 2017