cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283760 Expansion of (Sum_{i>=1} x^prime(i))*(Sum_{j>=1} x^(j^3)).

This page as a plain text file.
%I A283760 #11 Aug 18 2017 09:49:24
%S A283760 0,0,1,1,0,1,0,1,0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,0,1,0,1,2,1,2,0,1,
%T A283760 0,0,1,2,1,1,0,1,0,2,1,1,0,1,1,1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,0,1,2,2,
%U A283760 2,1,1,1,0,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,0,1,1,0,1,1,1,0,1,2,0,1,1,1,0,1,2,1,1,1,1,2,2
%N A283760 Expansion of (Sum_{i>=1} x^prime(i))*(Sum_{j>=1} x^(j^3)).
%C A283760 Number of representations of n as the sum of a prime number and a positive cube.
%H A283760 Antti Karttunen, <a href="/A283760/b283760.txt">Table of n, a(n) for n = 1..10000</a>
%H A283760 Ilya Gutkovskiy, <a href="/A283760/a283760.pdf">Extended graphical example</a>
%F A283760 G.f.: (Sum_{i>=1} x^prime(i))*(Sum_{j>=1} x^(j^3)).
%e A283760 a(32) = 2 because 32 = 31 + 1^3 = 5 + 3^3.
%t A283760 nmax = 120; Rest[CoefficientList[Series[Sum[x^Prime[i], {i, 1, nmax}] Sum[x^j^3, {j, 1, nmax}], {x, 0, nmax}], x]]
%o A283760 (PARI) concat([0,0], Vec((sum(i=1, 120, x^prime(i)) * sum(j=1, 120, x^(j^3))) + O(x^121))) \\ _Indranil Ghosh_, Mar 16 2017
%o A283760 (Scheme) (define (A283760 n) (cond ((< n 2) 0) (else (let loop ((k (A048766 n)) (s 0)) (if (< k 1) s (loop (- k 1) (+ s (A010051 (- n (expt k 3)))))))))) ;; _Antti Karttunen_, Aug 18 2017
%Y A283760 Cf. A000040, A000578, A064272, A211167.
%K A283760 nonn
%O A283760 1,30
%A A283760 _Ilya Gutkovskiy_, Mar 16 2017