This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283761 #9 Feb 16 2025 08:33:43 %S A283761 1,1,0,0,0,0,1,1,1,1,1,1,0,0,2,3,2,1,1,1,1,3,4,3,3,3,2,3,4,5,5,4,5,6, %T A283761 5,7,9,8,7,8,9,10,11,12,12,12,13,14,16,18,18,18,17,18,22,24,26,28,27, %U A283761 27,29,32,36,38,38,40,42,43,46,50,54,57,60,61,62,67,71,74,79,83,88,90,94,102,106,108 %N A283761 Number of partitions of n into distinct multiplicatively perfect numbers (A007422). %H A283761 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePerfectNumber.html">Multiplicative Perfect Number</a> %H A283761 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A283761 G.f.: Product_{k>=1} (1 + x^A007422(k)). %e A283761 a(15) = 3 because we have [15], [14, 1] and [8, 6, 1]. %t A283761 nmax = 85; CoefficientList[Series[Product[1 + Boole[Sqrt[k]^DivisorSigma[0, k]/k == k] x^k, {k, 1, nmax}], {x, 0, nmax}], x] %o A283761 (PARI) a(k) = k==1 || numdiv(k) == 4; %o A283761 Vec(prod(k=1, 85, 1 + a(k)*x^k) + O(x^86)) \\ _Indranil Ghosh_ and modified by _Michel Marcus_, Mar 17 2017 %Y A283761 Cf. A007422, A236473. %K A283761 nonn %O A283761 0,15 %A A283761 _Ilya Gutkovskiy_, Mar 16 2017