cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283799 Number of dispersed Dyck prefixes of length 2n and height n.

This page as a plain text file.
%I A283799 #16 Jan 17 2025 18:38:43
%S A283799 1,2,5,12,36,90,286,728,2380,6120,20349,52668,177100,460460,1560780,
%T A283799 4071600,13884156,36312408,124403620,326023280,1121099408,2942885946,
%U A283799 10150595910,26681566392,92263734836,242799302200,841392966470,2216352204360,7694644696200
%N A283799 Number of dispersed Dyck prefixes of length 2n and height n.
%H A283799 Alois P. Heinz, <a href="/A283799/b283799.txt">Table of n, a(n) for n = 0..1000</a>
%F A283799 Recursion: see Maple program.
%F A283799 a(n) = A282869(2*n, n).
%F A283799 From _Vaclav Kotesovec_, Mar 26 2018: (Start)
%F A283799 Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) =  - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
%F A283799 a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
%F A283799 From _Peter Luschny_, Jan 17 2025: (Start)
%F A283799 a(n) = binomial(2*n, n - floor(n/2 + 1/2)) + binomial(2*n, floor(n/2 + 1/2) - 1).
%F A283799 a(n) = A379822(n, (n + 1)/2).  (End)
%p A283799 a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))
%p A283799       *(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))
%p A283799       *(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4
%p A283799       -124866*n^3+216436*n^2-129032*n+24526))*a(n-1))
%p A283799        / ((3*n+2)*(27*n+9)*(855*n-1504)*n))
%p A283799     end:
%p A283799 seq(a(n), n=0..30);
%p A283799 a := n -> binomial(2*n, n-iquo(n+1, 2)) + binomial(2*n, iquo(n+1,2)-1):
%p A283799 seq(a(n), n = 0..28);  # _Peter Luschny_, Jan 17 2025
%t A283799 b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];
%t A283799 a[n_] := Coefficient[b[2n, 0, 0], z, n];
%t A283799 a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 21 2020, after _Alois P. Heinz_ in A282869 *)
%Y A283799 Cf. A282869, A283667, A379822.
%K A283799 nonn
%O A283799 0,2
%A A283799 _Alois P. Heinz_, Mar 16 2017