cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283807 Smallest prime p such that A005117(k+1) - A005117(k-1) = n, where p = A005117(k) for some k.

Original entry on oeis.org

2, 3, 7, 47, 97, 241, 5051, 204329, 217069, 29002021, 190346677, 3568762019, 221167421, 18725346527
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Mar 17 2017

Keywords

Examples

			2 is in this sequence because A005117(2+1) - A005117(2-1) = 3 - 1 = 2, where A005117(2) = 2 is prime for k = 2.
3 is in this sequence because A005117(3+1) - A005117(3-1) = 5 - 2 = 3, where A005117(3) = 3 is prime for k = 3.
7 is in this sequence because A005117(6+1) - A005117(6-1) = 10 - 6 = 4, where A005117(6) = 7 is prime for k = 6.
47 is in this sequence because A005117(31+1) - A005117(31-1) = 51 - 46 = 5, where A005117(31) = 47 is prime for k = 31.
97 is in this sequence because A005117(61+1) - A005117(61-1) = 101 - 95 = 6, where A005117(61) = 97 is prime for k = 61.
241 is in this sequence because A005117(150+1) - A005117(150-1) = 246 - 239 = 7, where A005117(150) = 241 is prime for k = 150.
5051 is in this sequence because A005117(3071+1) - A005117(3071-1) = 5053 - 5045 = 8, where A005117(3071) = 5051 is prime for k = 3071.
		

Crossrefs

Cf. A000040, A005117 (squarefree numbers), A067535, A070321.

Programs

  • Mathematica
    s = Select[Range[10^6], SquareFreeQ]; Table[k = 1; While[Nand[PrimeQ@ Set[p, s[[k]]], s[[k + 1]] - s[[k - 1]] == n], k++]; p, {n, 2, 10}] (* Michael De Vlieger, Mar 18 2017 *)

Extensions

a(10) from Michael De Vlieger, Mar 18 2017
a(11)-a(15) from Giovanni Resta, Mar 22 2017