A283808 Numbers k such that phi(phi(k)) divides k, where phi(k) is A000010(k).
1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 54, 56, 64, 72, 80, 96, 108, 112, 128, 144, 160, 162, 192, 216, 224, 256, 288, 320, 324, 384, 432, 448, 486, 512, 576, 640, 648, 768, 864, 896, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1728, 1792, 1944, 2048, 2304, 2560
Offset: 1
Keywords
Examples
56 is in the sequence because phi(phi(56)) = 8 divides 56.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Miriam Hausman, The solution of a special arithmetic equation, Canad. Math. Bull., 25(1) (1982), 114-117.
Programs
-
Mathematica
Select[Range[1000], Mod[#, EulerPhi@ EulerPhi@ #] == 0 &]
-
PARI
alias(e, eulerphi); for(n = 1, 1000, if(!Mod(n,e(e(n))), print1(n,", "))) \\ Indranil Ghosh, Mar 18 2017
-
Python
from sympy import totient as e print([n for n in range(1, 1001) if n%e(e(n))==0]) # Indranil Ghosh, Mar 18 2017
Formula
Sum_{n>=1} 1/a(n) = 667/210. - Amiram Eldar, Dec 13 2024
Comments