cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283811 Poly-Bernoulli numbers B_n^(k) with k = -5.

This page as a plain text file.
%I A283811 #32 Dec 30 2024 13:42:44
%S A283811 1,32,454,4718,41506,329462,2441314,17234438,117437746,779305142,
%T A283811 5067707074,32440729958,205120773586,1284333040022,7978977787234,
%U A283811 49258610238278,302555048903026,1850666770922102,11281963755617794,68586728901231398,416015651355490066,2518652552044759382
%N A283811 Poly-Bernoulli numbers B_n^(k) with k = -5.
%C A283811 a(n) is also the number of acyclic orientations of the complete bipartite graph K_{5,n}. - _Vincent Pilaud_, Sep 16 2020
%H A283811 Seiichi Manyama, <a href="/A283811/b283811.txt">Table of n, a(n) for n = 0..1282</a>
%H A283811 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (20,-155,580,-1044,720).
%F A283811 a(n) = 120*6^n - 240*5^n + 150*4^n - 30*3^n + 2^n.
%F A283811 From _Colin Barker_, Oct 14 2020: (Start)
%F A283811 G.f.: (1 - x)*(1 + 13*x - 18*x^2) / ((1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)).
%F A283811 a(n) = 20*a(n-1) - 155*a(n-2) + 580*a(n-3) - 1044*a(n-4) + 720*a(n-5) for n>4. (End)
%F A283811 E.g.f.: exp(2*x)*(1 - 30*exp(x) + 150*exp(2*x) - 240*exp(3*x) + 120*exp(4*x)). - _Stefano Spezia_, May 18 2024
%t A283811 Table[120*6^n - 240*5^n + 150*4^n - 30*3^n + 2^n , {n, 0, 20}] (* _Indranil Ghosh_, Mar 17 2017 *)
%t A283811 LinearRecurrence[{20,-155,580,-1044,720},{1,32,454,4718,41506},30] (* _Harvey P. Dale_, Dec 30 2024 *)
%o A283811 (PARI) a(n) = 120*6^n - 240*5^n + 150*4^n - 30*3^n + 2^n; \\ _Indranil Ghosh_, Mar 17 2017
%o A283811 (PARI) Vec((1 - x)*(1 + 13*x - 18*x^2) / ((1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)) + O(x^25)) \\ _Colin Barker_, Oct 14 2020
%o A283811 (Python) def A283811(n): return 120*6**n - 240*5**n + 150*4**n - 30*3**n + 2**n  # _Indranil Ghosh_, Mar 17 2017
%Y A283811 Row 5 of array A099594.
%K A283811 nonn,easy
%O A283811 0,2
%A A283811 _Seiichi Manyama_, Mar 17 2017