cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283828 Number of bounded regions in the Linial arrangement L_{n-1}.

This page as a plain text file.
%I A283828 #19 Nov 13 2023 10:47:09
%S A283828 0,0,1,4,26,212,2108,24720,334072,5112544,87396728,1650607040,
%T A283828 34132685120,767025716736,18612106195456,485013257865472,
%U A283828 13509071081429888,400505695457942528,12592502771190979712,418524228123134068224,14661145374751901317888
%N A283828 Number of bounded regions in the Linial arrangement L_{n-1}.
%C A283828 Except for the initial 0, these are the absolute values of A349719. - _Ira M. Gessel_, Nov 01 2023
%H A283828 Richard P. Stanley, <a href="https://www.pnas.org/doi/epdf/10.1073/pnas.93.6.2620">Hyperplane arrangements, interval orders, and trees</a>, Proc. Natl. Acad. Sci. USA 93 (1996), 2620-2625.
%H A283828 Vasu Tewari, <a href="https://arxiv.org/abs/1604.06894">Gessel polynomials, rooks, and extended Linial arrangements</a>, arXiv preprint arXiv:1604.06894 [math.CO], 2016.
%F A283828 From _Ira M. Gessel_, Nov 01 2023: (Start)
%F A283828 a(n) = (1/2^n) * Sum_{k=0..n} (k-1)^(n-1) * binomial(n,k) for n>=2.
%F A283828 In the following generating functions we take a(1)=1 rather than a(1)=0.
%F A283828 E.g.f.: 1 + (1/2)*x/LambertW(-(1/2)*x*exp(x/2)).
%F A283828 E.g.f.: 1-1/B(x), where B(x) is the e.g.f. of A007889. See  Corollary 4.2 of Stanley's paper. (End)
%F A283828 a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n) * 2^n * LambertW(exp(-1))^(n-1)). - _Vaclav Kotesovec_, Nov 13 2023
%Y A283828 Cf. A007889, A349719.
%K A283828 nonn
%O A283828 1,4
%A A283828 _N. J. A. Sloane_, Mar 19 2017
%E A283828 More terms from _Ira M. Gessel_, Nov 01 2023