A283845 Square array read by antidiagonals: T(1,1) = T(1,2) = T(2,1) = T(2,2) = 1; thereafter T(m,n) = min {T(m,n-2) + T(m,n-1), T(m-2,n) + T(m-1,n), T(m-2,n-2) + T(m-1,n-1)}.
1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 2, 3, 5, 8, 5, 3, 3, 5, 8, 13, 8, 5, 3, 5, 8, 13, 21, 13, 8, 5, 5, 8, 13, 21, 34, 21, 13, 8, 5, 8, 13, 21, 34, 55, 34, 21, 13, 8, 8, 13, 21, 34, 55, 89, 55, 34, 21, 13, 8, 13, 21, 34, 55, 89, 144, 89, 55, 34, 21, 13, 13, 21, 34, 55, 89, 144
Offset: 1
Examples
The square array begins: 1, 1, 2, 3, 5, 8, 13, 21, ... 1, 1, 2, 3, 5, 8, 13, 21, ... 2, 2, 2, 3, 5, 8, 13, 21, ... 3, 3, 3, 3, 5, 8, 13, 21, ... 5, 5, 5, 5, 5, 8, 13, 21, ... 8, 8, 8, 8, 8, 8, 13, 21, ... 13, 13, 13, 13, 13, 13, 13, 21, ... ... The first few antidiagonals are: 1; 1, 1; 2, 1, 2; 3, 2, 2, 3; 5, 3, 2, 3, 5; 8, 5, 3, 3, 5, 8; 13, 8, 5, 3, 5, 8, 13; ...
Links
- Indranil Ghosh, Rows 1..120, flattened
- Indranil Ghosh, C program to generate the triangle
Programs
-
Mathematica
Table[Fibonacci[Max[m, n - m + 1]], {n, 20}, {m, n}] // Flatten (* Indranil Ghosh, Apr 01 2017 *)
-
PARI
tabl(nn) = {for(n=1, nn, for(m=1, n, print1(fibonacci(max(m, n - m + 1)),", ");); print(););} tabl(20) \\ Indranil Ghosh, Apr 01 2017
-
Python
from sympy import fibonacci for n in range(1, 21): print([fibonacci(max(m, n - m + 1)) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 01 2017
Formula
T(m,n) = Fibonacci(k) where k = max(m,n).
Extensions
Extended by Indranil Ghosh, Apr 01 2017
Comments