cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283847 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 8, 36, 140, 522, 1920, 7030, 25704, 94302, 347488, 1286460, 4785300, 17879352, 67076096, 252579600, 954306220, 3616552422, 13743371072, 52356648380, 199909107900, 764873459802, 2932022620160, 11258982291252, 43303809016440, 166799919094902, 643371241120928
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (4*n)^(-1)*add(phi(d)*4^(n/d), d = select(type,divisors(n),odd)) - 2^(n-1)
      else (4*n)^(-1)*add(phi(d)*4^(n/d), d = divisors(n)) - 2^(n-1)
      fi
    end proc:
    map(f, [$3..50]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], OddQ]}] - 2^(n-1), (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Divisors[n]}] - 2^(n-1)];
    Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)

Formula

a(n) = (4*n)^(-1)*(Sum_{d|n, d odd} phi(d)*4^(n/d)) - 2^(n-1). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (100) (set n=2, m=n)