A283866 Multiplicities of prime factors of A243103(n).
0, 1, 1, 3, 1, 4, 2, 1, 6, 3, 7, 2, 1, 9, 5, 1, 7, 2, 4, 2, 10, 1, 14, 7, 1, 13, 3, 4, 2, 11, 2, 1, 17, 8, 3, 11, 2, 6, 13, 3, 1, 21, 13, 7, 1, 15, 7, 2, 16, 2, 4, 2, 24, 13, 1, 16, 2, 7, 2, 21, 6, 1, 28, 15, 5, 1, 18, 3, 9, 5, 16, 2, 1, 28, 14, 3, 22, 8
Offset: 1
Examples
Row 12 = 9,5 because the numbers 1 <= k <= 12 | 12^e with e>=0, {1,2,3,4,6,8,9,12} and these have the prime decompositions: 1 = 1 2 = 2^1 3 = 3^1 4 = 2^2 6 = 2^1 * 3^1 8 = 2^3 9 = 3^2 12 = 2^2 * 3^1 Adding the multiplicities of the factors of 12 for each of these gives us 9,5. Row 42 = 28,15,5 since A243103(42) = 64736452901018271744 = 2^28 * 3^15 * 7^5. Relationship of first 12 rows of a(n) with A027748(n) and A243103(n): n A027748(n) a(n) A243103(n) 1 1 0 1 = 1^0 2 2 1 2 = 2^1 3 3 1 3 = 3^1 4 2 3 8 = 2^3 5 5 1 5 = 5^1 6 2,3 4,2 144 = 2^4 * 3^2 7 7 1 7 = 7^1 8 2 6 64 = 2^6 9 3 3 27 = 3^3 10 2,5 7,2 3200 = 2^7 * 5*2 11 11 1 11 = 11^1 12 2,3 9,5 124416 = 2^9 * 3^5 ... T(n,m) for n = primorial p_x# = A002110(x), with horizontal axis the multiplicity pertaining to prime(m): x 2 3 5 7 11 13 17 19 1 1 2 4 2 3 21 13 7 4 118 63 36 26 5 625 351 200 147 101 6 2982 1694 1003 753 537 477 7 14131 8128 4905 3733 2693 2404 2025 8 64332 37274 22763 17448 12744 11450 9698 9078 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11739 (rows 1 <= n <= 5000)
Crossrefs
Programs
-
Mathematica
Table[With[{m = Floor@ Log2@ n}, Values@ Merge[Association /@ Map[#1 -> #2 & @@ # &, FactorInteger@ Rest@ Select[Range@ n, PowerMod[n, m, #] == 0 &], {2}], Total]] /. {} -> {0}, {n, 50}] // Flatten (* Michael De Vlieger, Mar 17 2017, Version 10 *)
Comments