cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283867 Numbers n such that 30*n^2 - 1 and 30*n^2 + 1 are (twin) primes.

Original entry on oeis.org

1, 3, 10, 14, 18, 38, 62, 73, 116, 118, 143, 183, 221, 232, 242, 330, 333, 413, 430, 455, 470, 496, 507, 533, 538, 556, 606, 622, 645, 675, 687, 701, 720, 777, 792, 819, 846, 879, 881, 895, 913, 1000, 1019, 1030, 1092, 1155, 1214, 1238, 1253, 1261, 1313, 1337, 1350, 1407, 1418, 1429, 1431
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2017

Keywords

Examples

			3 is in this sequence because 30*3^2 - 1 = 269 and 30*3^2 + 1 = 271 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsPrime(30*n^2-1) and IsPrime(30*n^2+1)];
    
  • Mathematica
    Select[Range@ 1431, PrimeQ[30*#^2 + 1] && PrimeQ[30*#^2 - 1] &] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    is(n)=isprime(30*n^2-1) && isprime(30*n^2+1) \\ Charles R Greathouse IV, Mar 17 2017
    
  • Python
    from sympy import isprime
    [i for i in range(1, 1501) if isprime(30*i**2 - 1) and isprime(30*i**2 + 1)] # Indranil Ghosh, Mar 17 2017

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Mar 17 2017