A283871 For all n, the set consisting of the terms {a(1), a(2), a(3), ..., a(n)} has an even number of digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
11, 22, 33, 44, 55, 66, 77, 88, 99, 1001, 1010, 1100, 1111, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1212, 1221, 1313, 1331, 1414, 1441, 1515, 1551, 1616, 1661, 1717, 1771, 1818, 1881, 1919, 1991, 2002, 2020, 2112, 2121, 2200, 2211, 2222, 2233, 2244, 2255, 2266, 2277, 2288, 2299, 2323, 2332, 2424, 2442, 2525
Offset: 1
Examples
The set consisting of the first 15 terms is {11, 22, 33, 44, 55, 66, 77, 88, 99, 1001, 1010, 1100, 1111, 1122, 1133}; we count there six 0's, sixteen 1's, four 2's, four 3's, etc. All those quantities of digits are even numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A283870.
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); andmap(t -> numboccur(t,L)::even, L) end proc: select(filter, [$1..10^4]); # Robert Israel, Jan 07 2024
Comments