This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283873 #20 Jun 16 2025 08:49:09 %S A283873 24,749,48,311,690,251,2706,2773,6504,1081,2162,1753,11356,6223,1392, %T A283873 2303,9838,637,14510,1995,3154,21459,72960,5691,8140,1475,2350,3647, %U A283873 1593,7607,55074,2719,9852,12143,106562,12615,9036,19883,15438,28369,8560,8415,3831 %N A283873 Smallest number that is the sum of n successive primes and also the sum of n successive semiprimes, n > 1. %C A283873 The sequence is non-monotone. %H A283873 Alois P. Heinz, <a href="/A283873/b283873.txt">Table of n, a(n) for n = 2..1000</a> %e A283873 a(2) = 24 = A000040(5) + A000040(6) = 11 + 13 = A001358(4) + A001358(5) = 10 + 14, %e A283873 a(3) = 749 = A000040(53) + A000040(54) + A000040(55) = 241 + 251 + 257 = A001358(79) + A001358(80) + A001358(81) = 247 + 249 + 253. %p A283873 issp:= n-> is(not isprime(n) and numtheory[bigomega](n)=2): %p A283873 ithsp:= proc(n) option remember; local k; for k from 1+ %p A283873 `if`(n=1, 1, ithsp(n-1)) while not issp(k) do od; k %p A283873 end: %p A283873 ps:= proc(i, j) option remember; %p A283873 ithprime(j)+`if`(i=j, 0, ps(i, j-1)) %p A283873 end: %p A283873 ss:= proc(i, j) option remember; %p A283873 ithsp(j)+`if`(i=j, 0, ss(i, j-1)) %p A283873 end: %p A283873 a:= proc(n) option remember; local i, j, k, l, p, s; %p A283873 i, j, k, l, p, s:= 1, n, 1, n, ps(1, n), ss(1, n); %p A283873 do if p=s then return p %p A283873 elif p<s then i:=i+1; j:=j+1; p:= ps(i, j) %p A283873 else k:=k+1; l:=l+1; s:= ss(k, l) %p A283873 fi od %p A283873 end: %p A283873 seq(a(n), n=2..50); # _Alois P. Heinz_, Mar 24 2017 %t A283873 sp=Select[Range[4,100000],2==PrimeOmega[#]&];pr=Prime[Range[PrimePi[Max[sp]]]]; %t A283873 Table[Intersection[(Total/@Partition[pr,k,1]),Total/@Partition[sp,k,1]][[1]],{k,2,100}] %Y A283873 Cf. A000040 Primes, A001358 Semiprimes, A118717 Sum of two consecutive semiprimes. %Y A283873 Sum of k consecutive primes: A001043 k=2, A034961 k=3, A034963 k=4, A034964 k=5, A127333 k=6, A127334 k=7, A127335 k=8, A127336 k=9, A127337 k=10, A127338 k=11, A127339 k=12. %K A283873 nonn %O A283873 2,1 %A A283873 _Zak Seidov_, Mar 17 2017 %E A283873 More terms from _Alois P. Heinz_, Mar 24 2017