cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283874 The Pierce expansion of the number Sum_{k>=1} 1/3^((2^k) - 1).

This page as a plain text file.
%I A283874 #54 Nov 21 2024 21:26:05
%S A283874 2,3,4,9,10,81,82,6561,6562,43046721,43046722,1853020188851841,
%T A283874 1853020188851842,3433683820292512484657849089281,
%U A283874 3433683820292512484657849089282,11790184577738583171520872861412518665678211592275841109096961,11790184577738583171520872861412518665678211592275841109096962
%N A283874 The Pierce expansion of the number Sum_{k>=1} 1/3^((2^k) - 1).
%C A283874 This sequence is the Pierce expansion of the number 3*s(3) - 1 = 0.370827687432918983346475478500709113969827799141493576... where s(u) = Sum_{k>=0} 1/u^(2^k) for u=3 has been considered by _N. J. A. Sloane_ in A004200.
%C A283874 The continued fraction expansion of the number 3*s(3)-1 is essentially A081771.
%H A283874 Jeffrey Shallit, <a href="http://dx.doi.org/10.1016/0022-314X(79)90040-4">Simple continued fractions for some irrational numbers</a>. J. Number Theory 11 (1979), no. 2, 209-217.
%F A283874 a(0) = 2, a(2k+1) = 3^(2^k), a(2k+2) = 3^(2^k) + 1, k >= 0.
%e A283874 The Pierce expansion of 0.3708276874329189833 starts as 1/2 - 1/(2*3) + 1/(2*3*4) - 1/(2*3*4*9) + 1/(2*3*4*9*10) - 1/(2*3*4*9*10*81) + ...
%p A283874 L:=[2]: for k from 0 to 6 do: L:=[op(L),3^(2^k),3^(2^k)+1]: od: print(L);
%o A283874 (PARI) a(n) = if (n==0, 2, if (n%2, 3^(2^((n-1)/2)), 3^(2^((n-2)/2))+1)); \\ _Michel Marcus_, Mar 31 2017
%K A283874 nonn
%O A283874 0,1
%A A283874 _Kutlwano Loeto_, Mar 24 2017