cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283925 Numerators of poly-Bernoulli numbers B_n^(k) with k=7.

This page as a plain text file.
%I A283925 #15 Mar 18 2017 08:34:13
%S A283925 1,1,-1931,32459,-2310243527,56642411,229396175476157,
%T A283925 -106580201025857,113274473629427263,5016925009330883,
%U A283925 -816236427314937438059737,-1108823743074112124111,1385996135483315761385354011661489
%N A283925 Numerators of poly-Bernoulli numbers B_n^(k) with k=7.
%H A283925 Seiichi Manyama, <a href="/A283925/b283925.txt">Table of n, a(n) for n = 0..269</a>
%H A283925 Wikipedia, <a href="https://en.wikipedia.org/wiki/Poly-Bernoulli_number">Poly-Bernoulli number</a>
%e A283925 B_0^(7) = 1, B_1^(7) = 1/128, B_2^(7) = -1931/279936, B_3^(7) = 32459/5971968, ...
%t A283925 B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-7), {m, 0, n}]; Table[Numerator[B[n]], {n, 0, 15}] (* _Indranil Ghosh_, Mar 18 2017 *)
%o A283925 (PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-7));
%o A283925 for(n=0, 15, print1(numerator(B(n)),", ")) \\ _Indranil Ghosh_, Mar 18 2017
%Y A283925 Cf. A283926.
%K A283925 sign,frac
%O A283925 0,3
%A A283925 _Seiichi Manyama_, Mar 18 2017