cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283926 Denominators of poly-Bernoulli numbers B_n^(k) with k=7.

This page as a plain text file.
%I A283926 #17 Mar 18 2017 08:34:17
%S A283926 1,128,279936,5971968,699840000000,93312000000,115269666624000000,
%T A283926 35129803161600000,160060165655040000000,1016255020032000000,
%U A283926 103970660613603049728000000,240047701272387993600000,41516393959179372527058885120000000
%N A283926 Denominators of poly-Bernoulli numbers B_n^(k) with k=7.
%H A283926 Seiichi Manyama, <a href="/A283926/b283926.txt">Table of n, a(n) for n = 0..407</a>
%H A283926 Wikipedia, <a href="https://en.wikipedia.org/wiki/Poly-Bernoulli_number">Poly-Bernoulli number</a>
%e A283926 B_0^(7) = 1, B_1^(7) = 1/128, B_2^(7) = -1931/279936, B_3^(7) = 32459/5971968, ...
%t A283926 B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-7), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* _Indranil Ghosh_, Mar 18 2017 *)
%o A283926 (PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-7));
%o A283926 for(n=0, 15, print1(numerator(B(n)),", ")) \\ _Indranil Ghosh_, Mar 18 2017
%Y A283926 Cf. A027643-A027648, A283925.
%K A283926 nonn,frac
%O A283926 0,2
%A A283926 _Seiichi Manyama_, Mar 18 2017