A283928 Numbers k such that prime(k) divides primorial(j) + 1 for exactly three integers j.
436, 2753, 13396, 19960, 24293, 26157, 58492, 58723, 61935, 121992, 136592, 145803, 149027, 159752, 179811, 180776, 184575, 194499, 262321, 268645, 280911, 315198, 327876, 339951, 364307, 390394, 413010, 433626, 444744, 492661, 510412, 518156, 541925, 542177
Offset: 1
Keywords
Examples
436 is in this sequence because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j: 206, 263, and 409. 180707 is not in this sequence because prime(180707) = 2464853 divides primorial(j) + 1 for exactly five integers j: 75366, 79914, 139731, 139990, and 175013. - _Jon E. Schoenfield_, Mar 30 2017
Links
- Giovanni Resta, Table of n, a(n) for n = 1..150
Crossrefs
Programs
-
Magma
countReqd:=3; kMaxTest:=20000; P:=PrimesInInterval(2,NthPrime(kMaxTest)); itos:=IntegerToString; a:=[]; for k in [1..kMaxTest] do p:=P[k]; pMinus1:=p-1; primorialModp:=1; jSuccess:=[]; if primorialModp eq pMinus1 then jSuccess:=[1]; end if; for j in [1..k-1] do primorialModp:=(primorialModp*P[j]) mod p; if primorialModp eq pMinus1 then jSuccess[#jSuccess+1]:=j; end if; end for; if #jSuccess eq countReqd then a[#a+1]:=k; "a("*itos(#a)*") = " * itos(k) * "; successes at j =", jSuccess; end if; end for; a; // Jon E. Schoenfield, Mar 25 2017
Extensions
a(10)-a(34) from Jon E. Schoenfield, Apr 02 2017
Comments