This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283938 #24 Mar 19 2017 13:18:00 %S A283938 1,4,2,10,6,3,18,13,8,5,29,22,16,11,7,43,34,26,20,14,9,59,49,39,31,24, %T A283938 17,12,78,66,55,45,36,28,21,15,99,86,73,62,51,41,33,25,19,123,108,94, %U A283938 81,69,57,47,38,30,23,150,133,117,103,89,76,64,53,44,35 %N A283938 Interspersion of the signature sequence of tau^2, where tau = (1 + sqrt(5))/2 = golden ratio. %C A283938 Row n is the ordered sequence of numbers k such that A118276(k) = n. As a sequence, A283938 is a permutation of the positive integers. As an array, A283938 is the joint-rank array (defined at A182801) of the numbers {i+j*r}, for i>=1, j>=1, where r = tau^2 = (3 + sqrt(5))/2. This is a transposable interspersion; i.e., every row intersperses all other rows, and every column intersperses all other columns. %H A283938 Clark Kimberling, <a href="/A283938/b283938.txt">Antidiagonals n = 1..60, flattened</a> %H A283938 Clark Kimberling and John E. Brown, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004. %e A283938 Northwest corner: %e A283938 1 4 10 18 29 43 59 78 99 123 %e A283938 2 6 13 22 34 49 66 86 108 133 %e A283938 3 8 16 26 39 55 73 94 117 143 %e A283938 5 11 20 31 45 62 81 103 127 154 %e A283938 7 14 24 36 51 69 89 112 137 165 %e A283938 9 17 28 41 57 76 97 121 147 176 %e A283938 From _Indranil Ghosh_, Mar 19 2017: (Start) %e A283938 Triangle formed when the array is read by antidiagonals: %e A283938 1; %e A283938 4, 2; %e A283938 10, 6, 3; %e A283938 18, 13, 8, 5; %e A283938 29, 22, 16, 11, 7; %e A283938 43, 34, 26, 20, 14, 9; %e A283938 59, 49, 39, 31, 24, 17, 12; %e A283938 78, 66, 55, 45, 36, 28, 21, 15; %e A283938 99, 86, 73, 62, 51, 41, 33, 25, 19; %e A283938 123, 108, 94, 81, 69, 57, 47, 38, 30, 23; %e A283938 ... %e A283938 (End) %t A283938 r = GoldenRatio^2; z = 100; %t A283938 s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; %t A283938 u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968, row 1 of A283938 *) %t A283938 v = Table[s[n], {n, 0, z}] (* A283969, col 1 of A283938 *) %t A283938 w[i_, j_] := v[[i]] + u[[j]] + (i - 1)*(j - 1) - 1; %t A283938 Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283938, array *) %t A283938 Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283938, sequence *) %o A283938 (PARI) %o A283938 \\ This code produces the triangle mentioned in the example section %o A283938 r = (3 +sqrt(5))/2; %o A283938 z = 100; %o A283938 s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); %o A283938 p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); %o A283938 u = v = vector(z + 1); %o A283938 for(n=1, 101, (v[n] = s(n - 1))); %o A283938 for(n=1, 101, (u[n] = p(n - 1))); %o A283938 w(i,j) = v[i] + u[j] + (i - 1) * (j - 1) - 1; %o A283938 tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k),", ");); print(););}; %o A283938 tabl(10) \\ _Indranil Ghosh_, Mar 19 2017 %Y A283938 Cf. A118276, A283961, A283968, A283969. %K A283938 nonn,tabl,easy %O A283938 1,2 %A A283938 _Clark Kimberling_, Mar 18 2017