A283968 a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1.
1, 2, 3, 5, 7, 9, 12, 15, 19, 23, 27, 32, 37, 42, 48, 54, 61, 68, 75, 83, 91, 100, 109, 118, 128, 138, 148, 159, 170, 182, 194, 206, 219, 232, 245, 259, 273, 288, 303, 318, 334, 350, 367, 384, 401, 419, 437, 455, 474, 493, 513, 533, 553, 574, 595, 617, 639
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
r = GoldenRatio^2; z = 120; s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968 *) Table[s[n], {n, 0, z}] (* A283969 *)
-
PARI
r = (3 + sqrt(5))/2; a(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); for(n=0, 30, print1(a(n),", ")) \\ Indranil Ghosh, Mar 19 2017
-
Python
from sympy import sqrt import math def a(n): return n + 1 + sum([int(math.floor((n - k)/r)) for k in range(n + 1)]) print([a(n) for n in range(61)]) # Indranil Ghosh, Mar 19 2017
Formula
a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1.
Comments