A283939 Interspersion of the signature sequence of sqrt(2).
1, 3, 2, 6, 5, 4, 11, 9, 8, 7, 17, 15, 13, 12, 10, 25, 22, 20, 18, 16, 14, 34, 31, 28, 26, 23, 21, 19, 44, 41, 38, 35, 32, 29, 27, 24, 56, 52, 49, 46, 42, 39, 36, 33, 30, 69, 65, 61, 58, 54, 50, 47, 43, 40, 37, 84, 79, 75, 71, 67, 63, 59, 55, 51, 48, 45, 100
Offset: 1
Examples
Northwest corner: 1 3 6 11 17 25 34 44 56 2 5 9 15 22 31 41 52 65 4 8 13 20 28 38 49 61 75 7 12 18 26 35 46 58 71 86 10 16 23 32 42 54 67 81 97 14 21 29 39 50 63 77 91 109
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Programs
-
Mathematica
r = Sqrt[2]; z = 100; s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A022776, col 1 of A283939 *) v = Table[s[n], {n, 0, z}] (* A022775, row 1 of A283939*) w[i_, j_] := u[[i]] + v[[j]] + (i - 1)*(j - 1) - 1; Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283939, array *) p = Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283939, sequence *)
-
PARI
r = sqrt(2); z = 100; s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); u = v = vector(z + 1); for(n=1, 101, (v[n] = s(n - 1))); for(n=1, 101, (u[n] = p(n - 1))); w(i, j) = u[i] + v[j] + (i - 1) * (j - 1) - 1; tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1), ", "); );print(); ); }; tabl(10) \\ Indranil Ghosh, Mar 21 2017
-
Python
sqrt2 = 2 ** 0.5 def s(n): return 1 if n<1 else s(n - 1) + 1 + int(n*sqrt2) def p(n): return n + 1 + sum([int((n - k)/sqrt2) for k in range(0, n+1)]) v=[s(n) for n in range(0, 101)] u=[p(n) for n in range(0, 101)] def w(i,j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1 for n in range(1, 11): print ([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 21 2017
Comments