This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283943 #21 Jun 19 2025 23:51:34 %S A283943 1,4,2,10,6,3,19,13,8,5,30,23,16,11,7,44,35,27,20,14,9,61,50,40,32,24, %T A283943 17,12,81,68,56,46,37,28,21,15,103,89,75,63,52,42,33,25,18,128,112,97, %U A283943 83,70,58,48,38,29,22,156,138,121,106,91,77,65,54,43,34 %N A283943 Interspersion of the signature sequence of e (a rectangular array, by antidiagonals). %C A283943 Row n is the ordered sequence of numbers k such that A023123(k) = n. As a sequence, A283943 is a permutation of the positive integers. This is a transposable interspersion; i.e., every row intersperses all other rows, and every column intersperses all other columns. %H A283943 Clark Kimberling, <a href="/A283943/b283943.txt">Antidiagonals n = 1..60, flattened</a> %H A283943 Clark Kimberling and John E. Brown, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004. %e A283943 Northwest corner: %e A283943 1 4 10 19 30 44 61 81 103 %e A283943 2 6 13 23 35 50 68 89 112 %e A283943 3 8 16 27 40 56 75 97 121 %e A283943 5 11 20 32 46 63 83 106 131 %e A283943 7 14 24 37 52 70 91 115 141 %e A283943 9 17 28 42 58 77 99 124 151 %t A283943 r = E; z = 100; s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; %t A283943 u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A022786, col 1 of A283943 *) %t A283943 v = Table[s[n], {n, 0, z}] (* A022785, row 1 of A283943 *) %t A283943 w[i_, j_] := u[[i]] + v[[j]] + (i - 1)*(j - 1) - 1; %t A283943 Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283943, array *) %t A283943 Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283943, sequence *) %o A283943 (PARI) %o A283943 \\ Produces the triangle when the array is read by antidiagonals %o A283943 r = exp(1); %o A283943 z = 100; %o A283943 s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); %o A283943 p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); %o A283943 u = v = vector(z + 1); %o A283943 for(n=1, 101, (v[n] = s(n - 1))); %o A283943 for(n=1, 101, (u[n] = p(n - 1))); %o A283943 w(i, j) = u[i] + v[j] + (i - 1) * (j - 1) - 1; %o A283943 tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1), ", "); ); print(); ); }; %o A283943 tabl(10) \\ _Indranil Ghosh_, Mar 26 2017 %o A283943 (Python) %o A283943 # Produces the triangle when the array is read by antidiagonals %o A283943 import math %o A283943 from mpmath import * %o A283943 mp.dps = 100 %o A283943 def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*e)) %o A283943 def p(n): return n + 1 + sum([int(math.floor((n - k)/e)) for k in range(0, n+1)]) %o A283943 v=[s(n) for n in range(0, 101)] %o A283943 u=[p(n) for n in range(0, 101)] %o A283943 def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1 %o A283943 for n in range(1, 11): %o A283943 print([w(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, Mar 26 2017 %Y A283943 Cf. A001113, A023123, A022786, A022785. %K A283943 nonn,tabl,easy %O A283943 1,2 %A A283943 _Clark Kimberling_, Mar 26 2017