This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283944 #21 Jan 22 2025 14:17:42 %S A283944 1,5,2,12,7,3,22,15,9,4,35,26,18,11,6,51,40,30,21,14,8,70,57,45,34,25, %T A283944 17,10,92,77,63,50,39,29,20,13,118,100,84,69,56,44,33,24,16,147,127, %U A283944 108,91,76,62,49,38,28,19,179,157,136,116,99,83,68,55,43,32 %N A283944 Interspersion of the signature sequence of Pi (rectangular array by antidiagonals). %C A283944 Row n is the ordered sequence of numbers k such that A023133(k) = n. As a sequence, it is a permutation of the positive integers. This is a transposable interspersion; i.e., every row intersperses all other rows, and every column intersperses all other columns. %H A283944 Clark Kimberling, <a href="/A283944/b283944.txt">Antidiagonals n = 1..60, flattened</a> %H A283944 Clark Kimberling and John E. Brown, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004. %e A283944 Northwest corner: %e A283944 1 5 12 22 35 51 70 92 118 %e A283944 2 7 15 26 40 57 77 100 127 %e A283944 3 9 18 30 45 63 84 108 136 %e A283944 4 11 21 34 50 69 91 115 145 %e A283944 6 14 25 39 56 76 99 125 155 %e A283944 8 17 29 44 62 83 107 134 165 %t A283944 r = Pi; z = 100; %t A283944 s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; %t A283944 u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A022796, col 1 of A283944 *) %t A283944 v = Table[s[n], {n, 0, z}] (* A022795, row 1 of A283944 *) %t A283944 w[i_, j_] := u[[i]] + v[[j]] + (i - 1)*(j - 1) - 1; %t A283944 Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283944, array*) %t A283944 Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283944, sequence *) %o A283944 (PARI) %o A283944 \\ Produces the triangle when the array is read by antidiagonals %o A283944 r = Pi; %o A283944 z = 100; %o A283944 s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); %o A283944 p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); %o A283944 u = v = vector(z + 1); %o A283944 for(n=1, 101, (v[n] = s(n - 1))); %o A283944 for(n=1, 101, (u[n] = p(n - 1))); %o A283944 w(i, j) = u[i] + v[j] + (i - 1) * (j - 1) - 1; %o A283944 tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1), ", "); ); print(); ); }; %o A283944 tabl(10) \\ _Indranil Ghosh_, Mar 26 2017 %o A283944 (Python) %o A283944 # Produces the triangle when the array is read by antidiagonals %o A283944 import math %o A283944 from mpmath import * %o A283944 mp.dps = 100 %o A283944 def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*pi)) %o A283944 def p(n): return n + 1 + sum([int(math.floor((n - k)/pi)) for k in range(0, n+1)]) %o A283944 v=[s(n) for n in range(0, 101)] %o A283944 u=[p(n) for n in range(0, 101)] %o A283944 def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1 %o A283944 for n in range(1, 11): %o A283944 print([w(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, Mar 26 2017 %Y A283944 Cf. A000796, A023133, A022796, A022795. %K A283944 nonn,tabl,easy %O A283944 1,2 %A A283944 _Clark Kimberling_, Mar 26 2017