cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283944 Interspersion of the signature sequence of Pi (rectangular array by antidiagonals).

This page as a plain text file.
%I A283944 #21 Jan 22 2025 14:17:42
%S A283944 1,5,2,12,7,3,22,15,9,4,35,26,18,11,6,51,40,30,21,14,8,70,57,45,34,25,
%T A283944 17,10,92,77,63,50,39,29,20,13,118,100,84,69,56,44,33,24,16,147,127,
%U A283944 108,91,76,62,49,38,28,19,179,157,136,116,99,83,68,55,43,32
%N A283944 Interspersion of the signature sequence of Pi (rectangular array by antidiagonals).
%C A283944 Row n is the ordered sequence of numbers k such that A023133(k) = n. As a sequence, it is a permutation of the positive integers. This is a transposable interspersion; i.e., every row intersperses all other rows, and every column intersperses all other columns.
%H A283944 Clark Kimberling, <a href="/A283944/b283944.txt">Antidiagonals n = 1..60, flattened</a>
%H A283944 Clark Kimberling and John E. Brown, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004.
%e A283944 Northwest corner:
%e A283944 1  5   12  22   35   51   70   92    118
%e A283944 2  7   15  26   40   57   77   100   127
%e A283944 3  9   18  30   45   63   84   108   136
%e A283944 4  11  21  34   50   69   91   115   145
%e A283944 6  14  25  39   56   76   99   125   155
%e A283944 8  17  29  44   62   83   107  134   165
%t A283944 r = Pi; z = 100;
%t A283944 s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r];
%t A283944 u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A022796, col 1 of A283944 *)
%t A283944 v = Table[s[n], {n, 0, z}] (* A022795, row 1 of A283944 *)
%t A283944 w[i_, j_] := u[[i]] + v[[j]] + (i - 1)*(j - 1) - 1;
%t A283944 Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283944, array*)
%t A283944 Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283944, sequence *)
%o A283944 (PARI)
%o A283944 \\ Produces the triangle when the array is read by antidiagonals
%o A283944 r = Pi;
%o A283944 z = 100;
%o A283944 s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r));
%o A283944 p(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
%o A283944 u = v = vector(z + 1);
%o A283944 for(n=1, 101, (v[n] = s(n - 1)));
%o A283944 for(n=1, 101, (u[n] = p(n - 1)));
%o A283944 w(i, j) = u[i] + v[j] + (i - 1) * (j - 1) - 1;
%o A283944 tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1), ", "); ); print(); ); };
%o A283944 tabl(10) \\ _Indranil Ghosh_, Mar 26 2017
%o A283944 (Python)
%o A283944 # Produces the triangle when the array is read by antidiagonals
%o A283944 import math
%o A283944 from mpmath import *
%o A283944 mp.dps = 100
%o A283944 def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*pi))
%o A283944 def p(n): return n + 1 + sum([int(math.floor((n - k)/pi)) for k in range(0, n+1)])
%o A283944 v=[s(n) for n in range(0, 101)]
%o A283944 u=[p(n) for n in range(0, 101)]
%o A283944 def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1
%o A283944 for n in range(1, 11):
%o A283944     print([w(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, Mar 26 2017
%Y A283944 Cf. A000796, A023133, A022796, A022795.
%K A283944 nonn,tabl,easy
%O A283944 1,2
%A A283944 _Clark Kimberling_, Mar 26 2017