This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283957 #27 Jul 09 2018 23:45:49 %S A283957 2,7,17,467,1033,2287,2333,3413,7523,10357,14723,15073,17467,18077, %T A283957 19423,19583,20177,24337,26113,26357,26987,27437,28627,29327,32077, %U A283957 32323,33637,42787,45127,46183,46273,46457,53093,54443,55333,57493,64927,73363,75133,76213,76493,76907,81883,82633,86587 %N A283957 Primes p such that 6p - 1 and 6p + 1 are twin primes and ((6p-1)^2 + (6p+1)^2) / 10 is prime. %C A283957 Only for prime p = 5 there are twin primes 6*5-1 = 29 and 6*5+1 = 31 such that 10 not divides (29^2 + 31^2) = 1802. %H A283957 Harvey P. Dale, <a href="/A283957/b283957.txt">Table of n, a(n) for n = 1..1000</a> %F A283957 a(n) == +-2 (mod 5). %e A283957 7 is a term because 7, 6*7-1 = 41, 6*7+1 = 43, and (41^2 + 43^2)/10 = 353 are prime numbers. %t A283957 Select[Prime@ Range[10^4], Times @@ Boole@ Map[PrimeQ, 6 # + {-1, 1}] == 1 && PrimeQ[((6 # - 1)^2 + (6 # + 1)^2)/10] &] (* _Michael De Vlieger_, Mar 20 2017 *) %t A283957 Select[Prime[Range[8500]],AllTrue[{6#-1,6#+1,((6#-1)^2+(6#+1)^2)/10}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jul 09 2018 *) %Y A283957 Subsequence of A060212. %K A283957 nonn %O A283957 1,1 %A A283957 _Thomas Ordowski_ and _Altug Alkan_, Mar 18 2017