cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283958 a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 4.

This page as a plain text file.
%I A283958 #17 Mar 20 2017 10:23:10
%S A283958 1,1,1,1,4,10,25,139,391,1033,5806,16384,43345,243685,687709,1819441,
%T A283958 10228936,28867366,76373161,429371599,1211741635,3205853305,
%U A283958 18023378194,50864281276,134569465633,756552512521,2135088071929,5648711703265,31757182147660
%N A283958 a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 4.
%H A283958 Seiichi Manyama, <a href="/A283958/b283958.txt">Table of n, a(n) for n = 1..1852</a>
%F A283958 a(3*k)   = 3*a(3*k-1) - a(3*k-2) - 1,
%F A283958 a(3*k+1) = 3*a(3*k)   - a(3*k-1) - 1,
%F A283958 a(3*k+2) = 6*a(3*k+1) - a(3*k)   - 1.
%F A283958 G.f.: -x*(4*x^8 + 10*x^7 + 25*x^6 - 33*x^5 - 39*x^4 - 42*x^3 + x^2 + x + 1) / ((x - 1)*(x^2 + x + 1)*(x^6 - 42*x^3 + 1)). - _Alois P. Heinz_, Mar 20 2017
%t A283958 a[n_]:= If[n<5, 1, (Sum[a[n-j] , {j, 3}] +  a[n - 1] a[n - 3])/a[n - 4]]; Table[a[n], {n, 29}] (* _Indranil Ghosh_, Mar 18 2017 *)
%o A283958 (PARI) a(n) = if(n<5, 1, (sum(j=1, 3, a(n - j)) + a(n - 1)*a(n - 3))/a(n - 4));
%o A283958 for(n=1, 29, print1(a(n),", ")) \\ _Indranil Ghosh_, Mar 18 2017
%Y A283958 Cf. A283329.
%Y A283958 Cf. A072881 (h=3), this sequence (h=4), A283959 (h=5), A283960 (h=6).
%K A283958 nonn,easy
%O A283958 1,5
%A A283958 _Seiichi Manyama_, Mar 18 2017