This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283961 #19 Mar 19 2017 12:32:44 %S A283961 1,2,4,3,6,10,5,8,13,18,7,11,16,22,29,9,14,20,26,34,43,12,17,24,31,39, %T A283961 49,59,15,21,28,36,45,55,66,78,19,25,33,41,51,62,73,86,99,23,30,38,47, %U A283961 57,69,81,94,108,123,27,35,44,53,64,76,89,103,117,133 %N A283961 Rank array, R, of (golden ratio)^2, by antidiagonals. %C A283961 Antidiagonals n = 1..60, flattened. %C A283961 Every row intersperses all other rows, and every column intersperses all other columns. The array is the dispersion of the complement of column 1, where column 1 is given by c(n) = c(n-1) + 1 + U(n), where U = upper Wythoff sequence (A001950). %H A283961 Clark Kimberling, <a href="/A283961/b283961.txt">Table of n, a(n) for n = 1..1829</a> %H A283961 Clark Kimberling and John E. Brown, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004. %F A283961 R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1. %e A283961 Northwest corner of R: %e A283961 1 2 3 5 7 9 12 15 %e A283961 4 6 8 11 14 17 21 25 %e A283961 10 13 16 20 24 28 33 38 %e A283961 18 22 26 31 36 41 47 53 %e A283961 29 34 39 45 51 57 64 71 %e A283961 43 49 55 62 69 76 84 92 %e A283961 Let t = (golden ratio)^2 = (3 + sqrt(5))/2; then R(i,j) = rank of (j,i) when all nonnegative integer pairs (a,b) are ranked by the relation << defined as follows: (a,b) << (c,d) if a + b*t < c + d*t, and also (a,b) << (c,d) if a + b*t = c + d*t and b < d. Thus R(2,0) = 10 is the rank of (0,2) in the list (0,0) << (1,0) << (2,0) << (0,1) << (3,0) << (1,1) << (4,0) << (2,1) << (5,0) << (0,2). %e A283961 From _Indranil Ghosh_, Mar 19 2017: (Start) %e A283961 Triangle formed when the array is read by antidiagonals: %e A283961 1; %e A283961 2, 4; %e A283961 3, 6, 10; %e A283961 5, 8, 13, 18; %e A283961 7, 11, 16, 22, 29; %e A283961 9, 14, 20, 26, 34, 43; %e A283961 12, 17, 24, 31, 39, 49, 59; %e A283961 15, 21, 28, 36, 45, 55, 66, 78; %e A283961 19, 25, 33, 41, 51, 62, 73, 86, 99; %e A283961 23, 30, 38, 47, 57, 69, 81, 94, 108, 123; %e A283961 ... %e A283961 (End) %t A283961 r = GoldenRatio^2; z = 100; %t A283961 s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; %t A283961 u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}]; (* A283968, row 1 of A283961 *) %t A283961 v = Table[s[n], {n, 0, z}]; (* A283969, col 1 of A283961 *) %t A283961 w[i_, j_] := v[[i]] + u[[j]] + (i - 1)*(j - 1) - 1; %t A283961 Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283961 *) %t A283961 v1 = Flatten[Table[w[k, n - k + 1], {n, 1, 60}, {k, 1, n}]] (* A283961,sequence *) %o A283961 (PARI) %o A283961 \\ This code produces the triangle mentioned in the example section %o A283961 r = (3 +sqrt(5))/2; %o A283961 z = 100; %o A283961 s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); %o A283961 p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); %o A283961 u = v = vector(z + 1); %o A283961 for(n=1, 101, (v[n] = s(n - 1))); %o A283961 for(n=1, 101, (u[n] = p(n - 1))); %o A283961 w(i,j) = v[i] + u[j] + (i - 1) * (j - 1) - 1; %o A283961 tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1),", ");); print(););}; %o A283961 tabl(10) \\ _Indranil Ghosh_, Mar 19 2017 %Y A283961 Cf. A001622, A118276, A283961, A283968, A283969. %K A283961 nonn,tabl,easy %O A283961 1,2 %A A283961 _Clark Kimberling_, Mar 18 2017