cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283962 Interspersion of the signature sequence of sqrt(1/2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12, 13, 15, 17, 14, 16, 18, 20, 22, 25, 19, 21, 23, 26, 28, 31, 34, 24, 27, 29, 32, 35, 38, 41, 44, 30, 33, 36, 39, 42, 46, 49, 52, 56, 37, 40, 43, 47, 50, 54, 58, 61, 65, 69, 45, 48, 51, 55, 59, 63, 67, 71, 75, 79, 84, 53
Offset: 1

Views

Author

Clark Kimberling, Mar 19 2017

Keywords

Comments

Every row intersperses all other rows, and every column intersperses all other columns. The array is the dispersion of the complement of (column 1 = A022776).
R(n,m) = position of n*r + m when all the numbers k*r + h, where r = sqrt(2), k >= 1, h >= 0, are jointly ranked. - Clark Kimberling, Oct 06 2017

Examples

			Northwest corner of R:
   1   2   4   7  10  14  19  24  30
   3   5   8  12  16  21  27  33  40
   6   9  13  18  23  29  36  43  51
  11  15  20  26  32  39  47  44  64
  17  22  28  35  42  50  59  68  78
  25  31  38  46  54  63  73  83  94
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[1/2]; z = 100;
    s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r];
    u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A022775, col 1 of A283962 *)
    v = Table[s[n], {n, 0, z}] (* A022776, row 1 of A283962*)
    w[i_, j_] := u[[i]] + v[[j]] + (i - 1)*(j - 1) - 1;
    Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283962, array *)
    Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283962, sequence *)
  • PARI
    r = sqrt(1/2);
    z = 100;
    s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r));
    p(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
    u = v = vector(z + 1);
    for(n=1, 101, (v[n] = s(n - 1)));
    for(n=1, 101, (u[n] = p(n - 1)));
    w(i, j) = u[i] + v[j] + (i - 1) * (j - 1) - 1;
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1), ", "); );print(); ); };
    tabl(10) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    r = 0.5 ** 0.5
    def s(n): return 1 if n<1 else s(n - 1) + 1 + int(n*r)
    def p(n): return n + 1 + sum([int((n - k)/r) for k in range(0, n+1)])
    v=[s(n) for n in range(0, 101)]
    u=[p(n) for n in range(0, 101)]
    def w(i,j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1
    for n in range(1, 11):
        print([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 21 2017
    
  • Python
    import numpy as np
    r = np.sqrt(1/2)
    x = np.arange(11)
    u = np.cumsum(np.ceil(x / r)).astype(int)
    v = np.cumsum(np.ceil(x * r)).astype(int)
    print(*[1 + u[k] + v[n-k] + k*(n-k) for n in range(11) for k in range(n+1)], sep=', ')
    # David Radcliffe, May 10 2025

Formula

R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1.