A283962 Interspersion of the signature sequence of sqrt(1/2).
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12, 13, 15, 17, 14, 16, 18, 20, 22, 25, 19, 21, 23, 26, 28, 31, 34, 24, 27, 29, 32, 35, 38, 41, 44, 30, 33, 36, 39, 42, 46, 49, 52, 56, 37, 40, 43, 47, 50, 54, 58, 61, 65, 69, 45, 48, 51, 55, 59, 63, 67, 71, 75, 79, 84, 53
Offset: 1
Examples
Northwest corner of R: 1 2 4 7 10 14 19 24 30 3 5 8 12 16 21 27 33 40 6 9 13 18 23 29 36 43 51 11 15 20 26 32 39 47 44 64 17 22 28 35 42 50 59 68 78 25 31 38 46 54 63 73 83 94
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Programs
-
Mathematica
r = Sqrt[1/2]; z = 100; s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A022775, col 1 of A283962 *) v = Table[s[n], {n, 0, z}] (* A022776, row 1 of A283962*) w[i_, j_] := u[[i]] + v[[j]] + (i - 1)*(j - 1) - 1; Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283962, array *) Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283962, sequence *)
-
PARI
r = sqrt(1/2); z = 100; s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); u = v = vector(z + 1); for(n=1, 101, (v[n] = s(n - 1))); for(n=1, 101, (u[n] = p(n - 1))); w(i, j) = u[i] + v[j] + (i - 1) * (j - 1) - 1; tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(k, n - k + 1), ", "); );print(); ); }; tabl(10) \\ Indranil Ghosh, Mar 21 2017
-
Python
r = 0.5 ** 0.5 def s(n): return 1 if n<1 else s(n - 1) + 1 + int(n*r) def p(n): return n + 1 + sum([int((n - k)/r) for k in range(0, n+1)]) v=[s(n) for n in range(0, 101)] u=[p(n) for n in range(0, 101)] def w(i,j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1 for n in range(1, 11): print([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 21 2017
-
Python
import numpy as np r = np.sqrt(1/2) x = np.arange(11) u = np.cumsum(np.ceil(x / r)).astype(int) v = np.cumsum(np.ceil(x * r)).astype(int) print(*[1 + u[k] + v[n-k] + k*(n-k) for n in range(11) for k in range(n+1)], sep=', ') # David Radcliffe, May 10 2025
Formula
R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1.
Comments