This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284004 #16 Mar 09 2025 12:27:35 %S A284004 1,2,6,2,30,6,2,6,210,30,6,30,2,6,30,6,2310,210,30,210,6,30,210,30,2, %T A284004 6,30,6,210,30,6,30,30030,2310,210,2310,30,210,2310,210,6,30,210,30, %U A284004 2310,210,30,210,2,6,30,6,210,30,6,30,2310,210,30,210,6,30,210,30,510510,30030,2310,30030,210,2310,30030,2310,30,210,2310,210,30030,2310,210,2310 %N A284004 a(n) = A046523(A284003(n)). %H A284004 Antti Karttunen, <a href="/A284004/b284004.txt">Table of n, a(n) for n = 0..8191</a> %H A284004 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A284004 a(n) = A046523(A284003(n)). %F A284004 a(n) = A002110(A001222(A284003(n))) = A002110(A209281(n+1)). [Latter so far only conjectured.] %t A284004 Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ Sort@ FactorInteger[#][[All, -1]]] - Boole[# == 1] &@ Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Times @@ (p^Mod[e, 2])] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 52}] (* _Michael De Vlieger_, Mar 18 2017 *) %o A284004 (PARI) %o A284004 \\ Code for A284003 given under that entry. %o A284004 A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ From _Charles R Greathouse IV_, Aug 17 2011 %o A284004 A284004(n) = A046523(A284003(n)); %o A284004 (Scheme) (define (A284004 n) (A046523 (A284003 n))) %Y A284004 Cf. A001222, A002110, A046523, A209281, A284003. %K A284004 nonn %O A284004 0,2 %A A284004 _Antti Karttunen_, Mar 18 2017