cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284017 Square root of the smallest square referenced in A038109 (Divisible exactly by the square of a prime).

This page as a plain text file.
%I A284017 #17 Nov 14 2020 05:26:54
%S A284017 2,3,2,3,2,5,2,2,2,3,7,5,2,2,3,2,3,5,2,2,3,2,7,3,2,2,2,3,11,2,3,2,2,3,
%T A284017 7,2,5,3,2,2,13,3,2,5,2,2,2,3,5,2,3,2,2,3,2,3,2,11,2,7,2,2,3,2,5,2,3,
%U A284017 2,3,17,2,7,2,3,2,3,2,2,5,2,3,13,2,3,2
%N A284017 Square root of the smallest square referenced in A038109 (Divisible exactly by the square of a prime).
%C A284017 a(n) is the least prime p whose exponent in the prime factorization of A038109(n) is exactly 2. - _Robert Israel_, Mar 28 2017
%H A284017 Robert Israel, <a href="/A284017/b284017.txt">Table of n, a(n) for n = 1..10000</a>
%F A284017 a(n) = sqrt(A284018(n)). - _Amiram Eldar_, Nov 14 2020
%e A284017 A038109(3)=12, 12 = 2*2*3, so 12 is divisible by the square of 2.
%p A284017 N:= 1000: # to use the members of A038109 <= N
%p A284017 P:= select(isprime, [$1..floor(sqrt(N))]):
%p A284017 S:= {}:
%p A284017 for p in P do
%p A284017   Ks:= select(t -> t mod p <> 0, {$1..floor(N/p^2)});
%p A284017   R:= map(`*`,Ks,p^2) minus S;
%p A284017   for r in R do B[r]:= p od:
%p A284017   S:= S union R;
%p A284017 od:
%p A284017 A038109:= sort(convert(S,list)):
%p A284017 seq(B[A038109[i]], i=1..nops(A038109)); # _Robert Israel_, Mar 28 2017
%t A284017 s[n_] := If[(pos = Position[(f = FactorInteger[n])[[;; , 2]], 2]) == {}, 1, f[[pos[[1, 1]], 1]]]; Select[Array[s, 300], # > 1 &] (* _Amiram Eldar_, Nov 14 2020 *)
%Y A284017 Cf. A038109, A284018.
%K A284017 nonn
%O A284017 1,1
%A A284017 _Robert Price_, Mar 18 2017
%E A284017 Corrected by _Robert Israel_, Mar 28 2017