This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284037 #42 Mar 09 2025 12:30:10 %S A284037 11,13,19,23,37,47,53,73,97,107,163,193,383,487,577,863,1153,2593, %T A284037 2917,4373,8747,995327,1492993,1990657,5308417,28311553,86093443, %U A284037 6879707137,1761205026817,2348273369087,5566277615617,7421703487487,21422803359743,79164837199873 %N A284037 Primes p such that p-1 and p+1 have two distinct prime factors. %C A284037 Either p-1 or p+1 must be of the form 2^i * 3^j, since among three consecutive numbers exactly one is a multiple of 3. - _Giovanni Resta_, Mar 29 2017 %C A284037 Subsequence of A219528. See the previous comment. - _Jason Yuen_, Mar 08 2025 %H A284037 Robert Israel, <a href="/A284037/b284037.txt">Table of n, a(n) for n = 1..51</a> (all terms < 10^75) %F A284037 A001221(a(n)) = 1 and A001221(a(n) - 1) = A001221(a(n) + 1) = 2. %e A284037 7 is not a term because n + 1 = 8 has only one prime factor. %e A284037 23 is a term because it is prime and n - 1 = 22 has two distinct prime factors (2, 11) and n + 1 = 24 has two distinct prime factors (2, 3). %e A284037 43 is not a term because n - 1 = 42 has three distinct prime factors (2, 3, 7). %p A284037 N:= 10^20: # To get all terms <= N %p A284037 Res:= {}: %p A284037 for i from 1 to ilog2(N) do %p A284037 for j from 1 to floor(log[3](N/2^i)) do %p A284037 q:= 2^i*3^j; %p A284037 if isprime(q-1) and nops(numtheory:-factorset((q-2)/2^padic:-ordp(q-2,2)))=1 then Res:= Res union {q-1} fi; %p A284037 if isprime(q+1) and nops(numtheory:-factorset((q+2)/2^padic:-ordp(q+2,2)))=1 then Res:= Res union {q+1} fi %p A284037 od od: %p A284037 sort(convert(Res,list)); # _Robert Israel_, Apr 16 2017 %t A284037 mx = 10^30; ok[t_] := PrimeQ[t] && PrimeNu[t-1]==2==PrimeNu[t+1]; Sort@ Reap[Do[ w = 2^i 3^j; Sow /@ Select[ w+ {1,-1}, ok], {i, Log2@ mx}, {j, 1, Log[3, mx/2^i]}]][[2, 1]] (* terms up to mx, _Giovanni Resta_, Mar 29 2017 *) %o A284037 (Sage) omega=sloane.A001221; [n for n in prime_range(10^6) if 2==omega(n-1)==omega(n+1)] %o A284037 (Sage) sorted([2^i*3^j+k for i in (1..40) for j in (1..20) for k in (-1,1) if is_prime(2^i*3^j+k) and sloane.A001221(2^i*3^j+2*k)==2]) %o A284037 (PARI) isok(n) = isprime(n) && (omega(n-1)==2) && (omega(n+1)==2); \\ _Michel Marcus_, Apr 17 2017 %Y A284037 Cf. A000668, A001221, A005105, A005109, A033845, A058383, A067386, A092506, A215504, A219528, A275598. %K A284037 nonn %O A284037 1,1 %A A284037 _Giuseppe Coppoletta_, Mar 28 2017 %E A284037 a(33)-a(34) from _Giovanni Resta_, Mar 29 2017