A284043 Starts of a run of at least n consecutive numbers k for which k^2 - k + 41 is composite.
41, 41, 122, 162, 299, 326, 326, 1064, 1064, 1064, 1064, 1064, 5664, 5664, 5664, 5664, 9265, 9265, 9265, 22818, 22818, 37784, 37784, 47494, 100202, 100202, 100202, 167628, 167628, 167628, 167628, 167628, 167628, 167628, 167628, 176956, 176956, 176956, 1081297
Offset: 1
Keywords
Examples
The values of f(n)=n^2-n+41 at 122, 123 and 124 are: 14803 = 113*131, 15047 = 41*367 and 15293 = 41*373. This is the first case of 3 consecutive composite values, thus a(3) = 122.
References
- Thomas Koshy, Elementary Number Theory with Applications, Academic Press, 2nd edition, 2007, Chapter 2, p. 147, exercise 50.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..130 (terms below 10^10)
- Sidney Kravitz, Problem 527, Mathematics Magazine, Vol. 36, No. 4 (1963), p. 264.
- Lawrence A. Ringenberg et al., A Prime Generator, Solutions to Problem 527, Mathematics Magazine, Vol. 37, No. 2 (1964), pp. 122-123.
Programs
-
Mathematica
f[n_] := n^2 - n + 41; a = PrimeQ[f[Range[1, 10^7]]]; b = Split[a]; c = Length /@ b; d = Accumulate[c]; nc = Length[c]; e = {}; For[len = 0, len < 100, len++; k = 2; While[k <= nc && c[[k]] < len, k += 2]; If[k <= nc && c[[k]] >= len, ind = d[[k - 1]] + 1; e = AppendTo[e, ind]]]; e
Comments