cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284048 a(n) is the smallest positive integer not already in the sequence such that a(n) + a(n-1) is a proper prime power (A246547), with a(1) = 1.

This page as a plain text file.
%I A284048 #11 Feb 16 2025 08:33:43
%S A284048 1,3,5,4,12,13,14,2,6,10,15,17,8,19,30,34,47,74,7,9,16,11,21,28,36,45,
%T A284048 76,49,32,89,39,25,24,40,41,23,26,38,43,78,50,31,18,46,35,29,20,44,37,
%U A284048 27,22,42,79,90,153,103,66,55,70,51,77,48,33,88,81,162,94,75,53,68,57,64,61,60,65,56,69,52,73,96,147
%N A284048 a(n) is the smallest positive integer not already in the sequence such that a(n) + a(n-1) is a proper prime power (A246547), with a(1) = 1.
%H A284048 Robert Israel, <a href="/A284048/b284048.txt">Table of n, a(n) for n = 1..10000</a>
%H A284048 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a>
%H A284048 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A284048 a(5) = 12 because 1, 3, 4 and 5 have already been used in the sequence, 4 + 2 = 6, 4 + 6 = 10, 4 + 7 = 11, 4 + 8 = 12, 4 + 9 = 13, 4 + 10 = 14 and 4 + 11 = 15 are not proper prime powers while 4 + 12 = 16 is a proper prime power.
%p A284048 N:= 2000: # to get all terms before the first where a(n)+a(n-1)>N
%p A284048 PP:= {seq(seq(p^j, j =2..floor(log[p](N))),p = select(isprime,[2,seq(i,i=3..floor(sqrt(N)),2)]))}:
%p A284048 PP:= sort(convert(PP,list)):
%p A284048 V:= Vector(N,datatype=integer[1],1):
%p A284048 A[1]:= 1; V[1]:= 0;
%p A284048 for n from 2 do
%p A284048   for pp in PP do
%p A284048     t:= pp - A[n-1];
%p A284048     if t > 0 and V[t] = 1 then
%p A284048       A[n]:= t; V[t]:= 0; break
%p A284048     fi;
%p A284048   od;
%p A284048   if not assigned(A[n]) then break fi
%p A284048 od:
%p A284048 seq(A[i],i=1..n-1); # _Robert Israel_, Apr 24 2017
%t A284048 f[s_List] := Block[{k = 1, a = s[[-1]]}, While[MemberQ[s, k] || ! (PrimePowerQ[a + k] && PrimeOmega[a + k] > 1), k++];Append[s, k]]; Nest[f, {1}, 80]
%Y A284048 Cf. A055265, A055266, A121878, A228730, A243625, A246547, A284049.
%K A284048 look,nonn
%O A284048 1,2
%A A284048 _Ilya Gutkovskiy_, Mar 19 2017