This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284050 #41 Apr 19 2017 11:36:41 %S A284050 2,3,1,1,2,2,1,1,2,1,1,4,2,2,1,1,2,1,1,4,2,1,1,4,1,1,2,2,6,2,1,1,4,1, %T A284050 1,2,4,1,1,2,1,1,4,2,2,1,1,2,1,1,4,4,1,1,2,1,1,2,2,6,2,2,1,1,4,1,1,2, %U A284050 4,1,1,2,1,1,2,2,4,1,1,2,1,1,4,2,1,1,4 %N A284050 a(n) = floor(A240751(n) / n), where A240751(n) = the smallest k such that in the prime power factorization of k! there exists at least one exponent n. %C A284050 For n > 2, p = a(n) + 1 is the prime that has exponent n in A240751(n)! (see A240751 for an outline of a proof). %C A284050 First occurrence of p-1: 1, 2, 12, 29, 186, 2865, 3265, 379852, 7172525, ..., (A240764). - _Robert G. Wilson v_, Apr 15 2017. Comment changed by _David A. Corneth_, Apr 15 2017 %H A284050 Robert G. Wilson v, <a href="/A284050/b284050.txt">Table of n, a(n) for n = 1..10000</a> %F A284050 A240751(n) = n*a(n) + A284051(n). - _Antti Karttunen_, Mar 22 2017 %F A284050 a(n) = A240755(n) - 1 for n > 2 and a(n) = A240755(n) for n < 3. I.e., A240755(n) - A157928(n+1). - _David A. Corneth_, Mar 27 2017 %e A284050 For n = 5, p = a(n) + 1 = 3 is the prime such that A240751(5)! = 12! is the least factorial that has exponent 5. %t A284050 Table[k = 2; While[! MemberQ[FactorInteger[k!][[All, -1]], n], k++]; Floor[k/n], {n, 87}] (* _Michael De Vlieger_, Mar 24 2017 *) %o A284050 (PARI) a(n) = A240751(n)\n \\ (for computation of A240751(n), see A240751) %Y A284050 Cf. A240751, A240755, A240764, A284051, A157928. %K A284050 nonn,easy %O A284050 1,1 %A A284050 _David A. Corneth_, Mar 19 2017