This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284061 #22 Mar 19 2023 23:37:20 %S A284061 3,4,6,6,8,11,8,11,16,21,9,12,18,24,34,11,15,23,30,42,47,12,16,24,32, %T A284061 46,53,66,14,19,30,37,54,62,77,84,16,23,34,46,66,74,94,101,121,18,24, %U A284061 36,47,68,79,99,107,127,154,21,29,42,55,79,92,114,126,146,180 %N A284061 Triangle read by rows: T(n,k) = pi(prime(k) * prime(n+1)). %C A284061 Prime(T(n,k)) is the largest prime q such that q * p_n# / prime(k) < p_(n+1)#, with primorial p_n# = A002110(n). %C A284061 T(n,1) = A020900(n+1), T(n,2) = A020901(n+1), T(n,3) = A020935(n+1), T(n,4) = A020937(n+1). %H A284061 Michael De Vlieger, <a href="/A284061/b284061.txt">Table of n, a(n) for n = 1..11325</a> (rows 1 <= n <= 150). %e A284061 a(5) = T(2,2) = 8 since the largest prime q <= prime(2) prime(3+1) = 3*7 = 21 is 19, the 8th prime. %e A284061 Rows 1 <= n <= 12 of triangle T(n,k): %e A284061 3 %e A284061 4 6 %e A284061 6 8 11 %e A284061 8 11 16 21 %e A284061 9 12 18 24 34 %e A284061 11 15 23 30 42 47 %e A284061 12 16 24 32 46 53 66 %e A284061 14 19 30 37 54 62 77 84 %e A284061 16 23 34 46 66 74 94 101 121 %e A284061 18 24 36 47 68 79 99 107 127 154 %e A284061 21 29 42 55 79 92 114 126 146 180 189 %e A284061 22 30 46 61 87 99 125 137 160 195 205 240 %e A284061 Values of m = q * p_n#/prime(k) < p_(n+1)# with q = prime(T(n,k)): %e A284061 prime(k) %e A284061 2 3 5 7 11 13 %e A284061 6 | 5 %e A284061 30 | 21 26 %e A284061 p_(n+1)# 210 | 195 190 186 %e A284061 2310 | 1995 2170 2226 2190 %e A284061 30030 | 26565 28490 28182 29370 29190 %e A284061 510510 | 465465 470470 498498 484770 494130 487410 %e A284061 All terms m of row n have omega(m) = A001221(m) = n. %t A284061 Table[PrimePi[Prime[k] Prime[n + 1]], {n, 11}, {k, n}] // Flatten %o A284061 (PARI) for(n=1, 12, for(k=1, n, print1(primepi(prime(k) * prime(n + 1)),", ");); print();); \\ _Indranil Ghosh_, Mar 19 2017 %o A284061 (Python) %o A284061 from sympy import prime, primepi %o A284061 for n in range(1, 13): %o A284061 print([primepi(prime(k) * prime(n + 1)) for k in range(1, n+1)]) %o A284061 # _Indranil Ghosh_, Mar 19 2017 %Y A284061 Cf. A020900, A020901, A020935, A020937. %K A284061 nonn,tabl,easy %O A284061 1,1 %A A284061 _Michael De Vlieger_, Mar 19 2017