cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284061 Triangle read by rows: T(n,k) = pi(prime(k) * prime(n+1)).

This page as a plain text file.
%I A284061 #22 Mar 19 2023 23:37:20
%S A284061 3,4,6,6,8,11,8,11,16,21,9,12,18,24,34,11,15,23,30,42,47,12,16,24,32,
%T A284061 46,53,66,14,19,30,37,54,62,77,84,16,23,34,46,66,74,94,101,121,18,24,
%U A284061 36,47,68,79,99,107,127,154,21,29,42,55,79,92,114,126,146,180
%N A284061 Triangle read by rows: T(n,k) = pi(prime(k) * prime(n+1)).
%C A284061 Prime(T(n,k)) is the largest prime q such that q * p_n# / prime(k) < p_(n+1)#, with primorial p_n# = A002110(n).
%C A284061 T(n,1) = A020900(n+1), T(n,2) = A020901(n+1), T(n,3) = A020935(n+1), T(n,4) = A020937(n+1).
%H A284061 Michael De Vlieger, <a href="/A284061/b284061.txt">Table of n, a(n) for n = 1..11325</a> (rows 1 <= n <= 150).
%e A284061 a(5) = T(2,2) = 8 since the largest prime q <= prime(2) prime(3+1) = 3*7 = 21 is 19, the 8th prime.
%e A284061 Rows 1 <= n <= 12 of triangle T(n,k):
%e A284061    3
%e A284061    4    6
%e A284061    6    8   11
%e A284061    8   11   16   21
%e A284061    9   12   18   24   34
%e A284061   11   15   23   30   42   47
%e A284061   12   16   24   32   46   53    66
%e A284061   14   19   30   37   54   62    77    84
%e A284061   16   23   34   46   66   74    94   101   121
%e A284061   18   24   36   47   68   79    99   107   127   154
%e A284061   21   29   42   55   79   92   114   126   146   180   189
%e A284061   22   30   46   61   87   99   125   137   160   195   205   240
%e A284061 Values of m = q * p_n#/prime(k) < p_(n+1)# with q = prime(T(n,k)):
%e A284061                                     prime(k)
%e A284061                       2       3       5       7      11      13
%e A284061            6  |       5
%e A284061           30  |      21      26
%e A284061 p_(n+1)# 210  |     195     190     186
%e A284061         2310  |    1995    2170    2226    2190
%e A284061        30030  |   26565   28490   28182   29370   29190
%e A284061       510510  |  465465  470470  498498  484770  494130  487410
%e A284061 All terms m of row n have omega(m) = A001221(m) = n.
%t A284061 Table[PrimePi[Prime[k] Prime[n + 1]], {n, 11}, {k, n}] // Flatten
%o A284061 (PARI) for(n=1, 12, for(k=1, n, print1(primepi(prime(k) * prime(n + 1)),", ");); print();); \\ _Indranil Ghosh_, Mar 19 2017
%o A284061 (Python)
%o A284061 from sympy import prime, primepi
%o A284061 for n in range(1, 13):
%o A284061     print([primepi(prime(k) * prime(n + 1)) for k in range(1, n+1)])
%o A284061 # _Indranil Ghosh_, Mar 19 2017
%Y A284061 Cf. A020900, A020901, A020935, A020937.
%K A284061 nonn,tabl,easy
%O A284061 1,1
%A A284061 _Michael De Vlieger_, Mar 19 2017