A284082 Smallest positive m such that n divides sigma_m(n) - j where j is some divisor of n, or 0 if no such m exists.
1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 4, 1, 1, 1, 1, 0, 5, 1, 1, 2, 6, 3, 1, 1, 2, 1, 5, 0, 4, 2, 2, 1, 9, 0, 1, 1, 3, 1, 8, 5, 11, 1, 2, 2, 2, 8, 4, 1, 5, 0, 1, 0, 14, 1, 2, 1, 5, 0, 6, 2, 5, 1, 0, 7, 9, 1, 0, 1, 18, 10, 2, 0, 0, 1, 0, 4, 10, 1, 2, 8
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m,mm,F,S,P,D,M0,M1; F:= ifactors(n)[2]; if nops(F) = 1 then return F[1][2] fi; P:= map(t -> t[1]^t[2], F); S:= mul(add(t[1]^(i*m),i=0..t[2]),t=F); D:= subs(n=0,numtheory:-divisors(n)); for mm from 1 to ilcm(op(map(numtheory:-phi, P)))+max(seq(t[2],t=F)) do if member(subs(m=mm,S) mod n, D) then return mm fi; od; 0 end proc: map(f, [$1..100]); # Robert Israel, Apr 27 2017
-
Mathematica
a[n_] := Block[{ds, d=Divisors[n], m=0}, While[m <= 2*n, m++; ds = DivisorSigma[m, n]; If[ Select[d, Mod[ds-#, n] == 0 &, 1] != {}, Break[]]]; If[m > 2*n, 0, m]]; Array[a, 85] (* assuming that sigma(m,n) mod n has a period <= 2*n, Giovanni Resta, Mar 20 2017 *)
Extensions
a(56) from Giovanni Resta, Mar 20 2017
Comments