cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284102 Numbers that are the sum of 10 consecutive primes and also the sum of 10 consecutive semiprimes.

This page as a plain text file.
%I A284102 #16 Mar 21 2017 13:38:20
%S A284102 6504,12946,12990,19052,19764,21490,31638,35604,41300,42364,45212,
%T A284102 52528,58104,60034,63400,66662,67858,69880,74090,74824,78542,88844,
%U A284102 96256,96346,97818,104584,106970,111122,113120,117540,125384
%N A284102 Numbers that are the sum of 10 consecutive primes and also the sum of 10 consecutive semiprimes.
%H A284102 Charles R Greathouse IV, <a href="/A284102/b284102.txt">Table of n, a(n) for n = 1..10000</a>
%e A284102 a(1)=6504 because 6504 is the sum of 10 consecutive primes A000040(114..114+9)={619,631,641,643,647,653,659,661,673,677} and also
%e A284102 6504 is the sum of 10 consecutive semiprimes A001358(192..192+9)={629,633,634,635,649,655,662,667,669,671}.
%e A284102 Note that a(1) = 6504 = A283873(10).
%p A284102 N:= 10^6:
%p A284102 P:= select(isprime, [$1..N]):
%p A284102 S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]):
%p A284102 P10:= {seq(add(P[i],i=m..m+9),m=1..nops(P)-9)}:
%p A284102 S10:= {seq(add(S[i],i=m..m+9),m=1..nops(S)-9)}:
%p A284102 sort(convert(P10 intersect S10,list)); # _Robert Israel_, Mar 20 2017
%t A284102 With[{nn = 12600}, Intersection[Total /@ Partition[Prime@ Range@ PrimePi@ nn, 10, 1], Total /@ Partition[Select[Range@ nn, PrimeOmega@ # == 2 &], 10, 1]]] (* _Michael De Vlieger_, Mar 20 2017 *)
%o A284102 (PARI) list(lim)=if(lim<6504,return([])); my(v=List(),u=v,P=primes(9),x=(lim+10*log(lim))\1,t); forprime(p=2,x\2, forprime(q=2,min(x\p,p), listput(u,p*q))); u=Set(u); while(u[#u]+1+(t=sum(i=0,8,u[#u-i]))<=lim, for(n=x+1,lim-t, if(issemi(n), u=concat(u,n); next(2))); break); for(i=1,#u-9, u[i]+=sum(j=1,9,u[i+j])); t=vecsum(P); forprime(p=P[#P]+1,, t+=p; if(t>lim, break); if(setsearch(u,t), listput(v,t)); t-=P[1]; P=concat(P[2..9], p)); Vec(v) \\ _Charles R Greathouse IV_, Mar 20 2017
%Y A284102 Cf. A000040, A001358, A127337, A283873.
%K A284102 nonn
%O A284102 1,1
%A A284102 _Zak Seidov_, Mar 20 2017