This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284214 #29 Mar 30 2017 01:14:15 %S A284214 0,0,0,1,2,3,5,0,2,4,6,9,0,3,7,12,0,4,8,12,17,1,6,12,19,0,6,13,21,29, %T A284214 7,16,25,0,8,16,24,33,4,13,23,34,2,12,23,35,0,12,25,38,0,12,25,39,53, %U A284214 12,27,42,57,13,29,45,62,16,33,50,0,16,32,48,65,11,28,46,65,8,26,45,65,5 %N A284214 Remainder when sum of first n terms of A006949 is divided by n. %C A284214 Sequence represents e(n, 1) where e(n, i) = (Sum_{k=0..n-1} A006949(k)) mod (n*i). %C A284214 See also alternative scatterplot and graph of this sequence in Links section. %H A284214 Altug Alkan, <a href="/A284214/b284214.txt">Table of n, a(n) for n = 1..20000</a> %H A284214 Altug Alkan, <a href="/A284214/a284214_1.png">Alternative graph of A284214</a> %H A284214 Altug Alkan, <a href="/A284214/a284214_3.png">Alternative scatterplot of A284214</a> %H A284214 Altug Alkan, <a href="/A284214/a284214_4.png">Illustration of residue classes modulo 4</a> %F A284214 a(n) = (Sum_{k=0..n-1} A006949(k)) mod n. %e A284214 a(6) = 3 because Sum_{k=0..5} A006949(k) = 1 + 1 + 1 + 2 + 2 + 2 = 9 and remainder when 9 is divided by 6 is 3. %t A284214 a[0] = a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1 - a[n - 1]] + a[n - 2 - a[n - 2]]; MapIndexed[Mod[#1, First@ #2] &, Accumulate@ Table[a@ n, {n, 0, 79}]] (* _Michael De Vlieger_, Mar 24 2017 *) %Y A284214 Cf. A006949, A282891, A283025. %K A284214 nonn %O A284214 1,5 %A A284214 _Altug Alkan_, Mar 23 2017