This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284255 #25 Mar 28 2021 07:01:34 %S A284255 1,2,3,4,5,6,7,8,9,2,11,12,13,2,15,16,17,18,19,4,21,2,23,24,25,2,27,4, %T A284255 29,6,31,32,3,2,35,36,37,2,3,8,41,6,43,4,45,2,47,48,49,2,3,4,53,54,55, %U A284255 8,3,2,59,12,61,2,63,64,65,6,67,4,3,2,71,72,73,2,75,4,77,6,79,16,81,2,83,12,85,2,3,8,89,18,91,4,3,2,95,96,97,2,9,4,101,6 %N A284255 Largest divisor of n such that all its prime factors are less than the square of the smallest prime factor of n, a(1) = 1. %H A284255 Antti Karttunen, <a href="/A284255/b284255.txt">Table of n, a(n) for n = 1..10001</a> %F A284255 a(n) = n / A284254(n). %F A284255 Other identities. For all n >= 1: %F A284255 A006530(a(n)) = A284260(n). %F A284255 A020639(a(n)) = A020639(n). %F A284255 A001221(a(n)) = A284259(n). %F A284255 A001222(a(n)) = A284257(n). %e A284255 For n = 50 = 2*5*5, only prime less than 2^2 is 2, thus a(50) = 2. %e A284255 For n = 90 = 2*3*3*5, the primes less than 2^2 are 2, 3 and 3, thus a(90) = 2*3*3 = 18. %t A284255 Table[If[n == 1, 1, Function[d, First[Select[Reverse@ First@ d, Times @@ Boole@ Map[# < Last[d]^2 &, FactorInteger[#][[All, 1]]] == 1 &] /. {} -> {1}]]@ {#, First@ Select[#, PrimeQ]} &@ Divisors@ n], {n, 102}] (* _Michael De Vlieger_, Mar 24 2017 *) %o A284255 (Scheme) (define (A284255 n) (/ n (A284254 n))) %o A284255 (PARI) %o A284255 A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1)); %o A284255 a(n) = if(A(n)==1, 1, A(n)*a(n/A(n))); %o A284255 for(n=1, 150, print1(n/a(n),", ")) \\ _Indranil Ghosh_, after _David A. Corneth_, Mar 24 2017 %o A284255 (Python) %o A284255 from sympy import primefactors %o A284255 def A(n): %o A284255 pf = primefactors(n) %o A284255 if pf: min_pf2 = min(pf)**2 %o A284255 for i in pf: %o A284255 if i > min_pf2: return i %o A284255 return 1 %o A284255 def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n)) %o A284255 print([n//a(n) for n in range(1, 151)]) # _Indranil Ghosh_, Mar 24 2017 %Y A284255 Cf. A001221, A001222, A006530, A020639, A284252, A284254, A284256, A284257, A284258, A284259, A284260. %Y A284255 Differs from A284253 for the first time at n=50, where a(50) = 2, while A284253(50) = 10. %K A284255 nonn %O A284255 1,2 %A A284255 _Antti Karttunen_, Mar 24 2017