This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284258 #20 Mar 23 2021 05:38:41 %S A284258 0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0,1,0,0,1,1, %T A284258 0,0,0,1,1,1,0,1,0,1,0,1,0,0,0,1,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0,1,0,1, %U A284258 1,2,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,1,1,1,0,1,0,1,0,1,0,0,0,2,1,1,0,1,0,1,1,1,0,1 %N A284258 a(n) = number of distinct prime factors of n that are > the square of smallest prime factor of n, a(1) = 0. %H A284258 Antti Karttunen, <a href="/A284258/b284258.txt">Table of n, a(n) for n = 1..10001</a> %F A284258 a(n) = Sum_{p|n, p prime and > spf(n)^2} sign(p), where spf(n) (A020639) gives the smallest prime factor of n, and sign(p) = A057427(p) = 1 for all p. %F A284258 a(n) = A001221(A284254(n)). %F A284258 a(n) = A001221(n) - A284259(n). %F A284258 a(n) <= A284256(n). %e A284258 For n = 50, 2*5*5, the prime factor > 2^2 is 5, which is counted only once, thus a(50) = 1. %e A284258 For n = 70, 2*5*7, the prime factors > 2^2 are 5 and 7, thus a(70) = 2. %t A284258 Table[If[n == 1, 0, Count[#, d_ /; d > First[#]^2] &@ FactorInteger[n][[All, 1]]], {n, 120}] (* _Michael De Vlieger_, Mar 24 2017 *) %o A284258 (Scheme) (define (A284258 n) (A001221 (A284254 n))) %o A284258 (PARI) %o A284258 A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1)); %o A284258 a(n) = if(A(n)==1, 1, A(n)*a(n/A(n))); %o A284258 for(n=1, 150, print1(omega(a(n)),", ")) \\ _Indranil Ghosh_, after _David A. Corneth_, Mar 24 2017 %o A284258 (Python) %o A284258 from sympy import primefactors %o A284258 def omega(n): return len(primefactors(n)) %o A284258 def A(n): %o A284258 for i in primefactors(n): %o A284258 if i>min(primefactors(n))**2: return i %o A284258 return 1 %o A284258 def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n)) %o A284258 print([omega(a(n)) for n in range(1, 151)]) # _Indranil Ghosh_, Mar 24 2017 %Y A284258 Cf. A001221, A020639, A057427, A284252, A284253, A284254, A284255, A284257, A284259, A284261. %Y A284258 Cf. A251726 (gives the positions of zeros after the initial a(1)=0). %Y A284258 Differs from related A284256 for the first time at n=50, where a(50)=1, while A284256(50)=2. %K A284258 nonn %O A284258 1,70 %A A284258 _Antti Karttunen_, Mar 24 2017