This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284260 #18 Apr 29 2021 12:33:07 %S A284260 1,2,3,2,5,3,7,2,3,2,11,3,13,2,5,2,17,3,19,2,7,2,23,3,5,2,3,2,29,3,31, %T A284260 2,3,2,7,3,37,2,3,2,41,3,43,2,5,2,47,3,7,2,3,2,53,3,11,2,3,2,59,3,61, %U A284260 2,7,2,13,3,67,2,3,2,71,3,73,2,5,2,11,3,79,2,3,2,83,3,17,2,3,2,89,3,13,2,3,2,19,3,97,2,3,2,101,3,103,2,7,2,107,3,109 %N A284260 Greatest prime dividing n which is less than A020639(n)^2, where A020639(n) is the smallest prime dividing n, a(1) = 1. %H A284260 Antti Karttunen, <a href="/A284260/b284260.txt">Table of n, a(n) for n = 1..10001</a> %F A284260 a(n) = A006530(A284255(n)). %t A284260 Table[Last[Function[s, Select[s, # < First[s]^2 &]]@ FactorInteger[n][[All, 1]] /. {} -> {1}], {n, 109}] (* _Michael De Vlieger_, Mar 24 2017 *) %o A284260 (Scheme) (define (A284260 n) (A006530 (A284255 n))) %o A284260 (PARI) A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1)); %o A284260 a(n) = if(A(n)==1, 1, A(n)*a(n/A(n))); %o A284260 gpf(n) = if(n>1, vecmax(factor(n)[,1]),1); %o A284260 for(n=1, 150, print1(gpf(n/a(n)),", ")) \\ _Indranil Ghosh_, Mar 24 2017, after _David A. Corneth_ %o A284260 (Python) %o A284260 from sympy import primefactors %o A284260 def A(n): %o A284260 for i in primefactors(n): %o A284260 if i>min(primefactors(n))**2: return i %o A284260 return 1 %o A284260 def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n)) %o A284260 def gpf(n): return 1 if n<2 else max(primefactors(n)) %o A284260 print([gpf(n//a(n)) for n in range(1, 151)]) # _Indranil Ghosh_, Mar 24 2017 %Y A284260 Cf. A006530, A020639, A284252, A284253, A284254, A284255, A284256, A284257, A284258, A284259. %Y A284260 Cf. A251726 (gives n > 1 such that a(n) = A006530(n)). %K A284260 nonn %O A284260 1,2 %A A284260 _Antti Karttunen_, Mar 24 2017