This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284270 #13 Apr 10 2017 12:28:04 %S A284270 0,0,0,0,0,1,0,0,2,0,0,0,0,0,3,0,0,1,0,1,2,0,0,0,0,3,4,4,0,0,0,0,2,0, %T A284270 1,0,0,0,0,0,2,2,1,0,7,0,0,2,0,1,0,2,0,5,6,0,0,0,0,0,0,4,0,7,2,9,0,0, %U A284270 0,0,4,0,2,0,1,6,7,4,0,0,1,0,1,4,0,0,8,4,0,8,8,0,0,0,0,4,0,4,0,5,4,3,0,3,8,0,0,2,0,2,0,6,0,7,2,0,4,11,2,4 %N A284270 Square array A(r,c) = A048720(A065621(r), c) mod r, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc. %H A284270 Antti Karttunen, <a href="/A284270/b284270.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of the array</a> %H A284270 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A284270 A(r,c) = A277320(r,c) mod r = A048720(A065621(r), c) mod r. %e A284270 The top left 17 x 19 corner of the array: %e A284270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A284270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A284270 1, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 2 %e A284270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A284270 3, 1, 3, 2, 2, 1, 0, 4, 1, 4, 2, 2, 1, 0, 0, 3, 1 %e A284270 2, 4, 0, 2, 0, 0, 0, 4, 0, 0, 2, 0, 4, 0, 0, 2, 4 %e A284270 4, 1, 1, 2, 4, 2, 0, 4, 6, 1, 6, 4, 1, 0, 0, 1, 5 %e A284270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A284270 7, 5, 7, 1, 8, 5, 7, 2, 2, 7, 2, 1, 1, 5, 0, 4, 6 %e A284270 6, 2, 6, 4, 4, 2, 0, 8, 2, 8, 4, 4, 2, 0, 0, 6, 2 %e A284270 9, 7, 0, 3, 0, 0, 5, 6, 0, 0, 8, 0, 1, 10, 0, 1, 0 %e A284270 4, 8, 0, 4, 0, 0, 0, 8, 0, 0, 4, 0, 8, 0, 0, 4, 8 %e A284270 8, 3, 11, 6, 0, 9, 3, 12, 7, 0, 8, 5, 12, 6, 0, 11, 0 %e A284270 8, 2, 2, 4, 8, 4, 0, 8, 12, 2, 12, 8, 2, 0, 0, 2, 10 %e A284270 4, 8, 8, 1, 5, 1, 1, 2, 4, 10, 8, 2, 4, 2, 0, 4, 6 %e A284270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A284270 15, 13, 15, 9, 7, 13, 15, 1, 16, 14, 16, 9, 7, 13, 15, 2, 2 %e A284270 14, 10, 14, 2, 16, 10, 14, 4, 4, 14, 4, 2, 2, 10, 0, 8, 12 %e A284270 17, 15, 13, 11, 7, 7, 0, 3, 0, 14, 6, 14, 16, 0, 13, 6, 3 %o A284270 (Scheme) %o A284270 (define (A284270 n) (A284270bi (A002260 n) (A004736 n))) %o A284270 (define (A284270bi row col) (modulo (A277320bi row col) row)) ;; For A277320bi, see in A277320. %Y A284270 Cf. A048720, A065621, A115872, A277320, A284269 (transpose), A284273 (main diagonal), A284552 (column 1). %Y A284270 Row 3: A284557. %K A284270 nonn,tabl,base %O A284270 1,9 %A A284270 _Antti Karttunen_, Apr 10 2017