A284282 a(n) = the number k such that A030067(2k-1) = n, or 0 if n does not occur in the semi-Fibonacci sequence A030067.
0, 1, 2, 3, 0, 4, 5, 0, 0, 6, 0, 7, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 10, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
a[n_] := a[n] = Which[n == 1, 1, EvenQ@ n, a[n/2], True, a[n - 1] + a[n - 2]]; With[{nn = 87}, Function[s, Function[t, {0}~Join~ReplacePart[t, Map[# -> First@ Lookup[s, #] &, TakeWhile[Keys@ s, # <= nn &]]]]@ ConstantArray[0, nn]]@ PositionIndex@ Array[a[2 # - 1] &, 10^3]] (* Michael De Vlieger, Mar 25 2017, Version 10, after Jean-François Alcover at A030067 *)
-
PARI
A284282(n)=setsearch(A030068_vec,n) \\ Use, e.g., A030068(100) to compute the global variable A030068_vec far enough for n <= 22880. - M. F. Hasler, Mar 25 2017
Comments