This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284286 #83 Feb 21 2021 03:59:56 %S A284286 1,8,40,160,552,1712,4896,13120,33320,80872,188784,425952,932640, %T A284286 1988080,4137024,8422848,16810536,32943760,63482760,120440608, %U A284286 225217904,415498496,756920160,1362645440,2425895712,4273590392,7454092720,12879684160,22056267840 %N A284286 Expansion of eta(q^2)^4 / eta(q)^8 in powers of q. %H A284286 Seiichi Manyama, <a href="/A284286/b284286.txt">Table of n, a(n) for n = 0..10000</a> %F A284286 a(n) = (-1)^n * A004405(n). %F A284286 a(0) = 1, a(n) = (8/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. %F A284286 G.f.: Prod_{k>0} (1 - x^(2k))^4 / (1 - x^k)^8. %t A284286 eta = QPochhammer; %t A284286 CoefficientList[eta[q^2]^4/eta[q]^8 + O[q]^30, q] (* _Jean-François Alcover_, Feb 21 2021 *) %o A284286 (Julia) # JacobiTheta4 is defined in A002448. %o A284286 A284286List(len) = JacobiTheta4(len, -4) %o A284286 A284286List(29) |> println # _Peter Luschny_, Mar 12 2018 %Y A284286 Column k=4 of A288515. %Y A284286 Cf. A002131, A004405, A096727. %K A284286 nonn %O A284286 0,2 %A A284286 _Seiichi Manyama_, May 02 2017