cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284286 Expansion of eta(q^2)^4 / eta(q)^8 in powers of q.

This page as a plain text file.
%I A284286 #83 Feb 21 2021 03:59:56
%S A284286 1,8,40,160,552,1712,4896,13120,33320,80872,188784,425952,932640,
%T A284286 1988080,4137024,8422848,16810536,32943760,63482760,120440608,
%U A284286 225217904,415498496,756920160,1362645440,2425895712,4273590392,7454092720,12879684160,22056267840
%N A284286 Expansion of eta(q^2)^4 / eta(q)^8 in powers of q.
%H A284286 Seiichi Manyama, <a href="/A284286/b284286.txt">Table of n, a(n) for n = 0..10000</a>
%F A284286 a(n) = (-1)^n * A004405(n).
%F A284286 a(0) = 1, a(n) = (8/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
%F A284286 G.f.: Prod_{k>0} (1 - x^(2k))^4 / (1 - x^k)^8.
%t A284286 eta = QPochhammer;
%t A284286 CoefficientList[eta[q^2]^4/eta[q]^8 + O[q]^30, q] (* _Jean-François Alcover_, Feb 21 2021 *)
%o A284286 (Julia) # JacobiTheta4 is defined in A002448.
%o A284286 A284286List(len) = JacobiTheta4(len, -4)
%o A284286 A284286List(29) |> println # _Peter Luschny_, Mar 12 2018
%Y A284286 Column k=4 of A288515.
%Y A284286 Cf. A002131, A004405, A096727.
%K A284286 nonn
%O A284286 0,2
%A A284286 _Seiichi Manyama_, May 02 2017