cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284301 Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 865", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 0, 3, 5, 10, 29, 42, 119, 171, 477, 682, 1909, 2730, 7637, 10922, 30677, 43946, 122229, 174762, 488829, 699066, 1955159, 2796219, 7853397, 11250366, 31290717, 44739306, 125138261, 178956970, 500520277, 715827882, 2010469717, 2880088746, 8010421589
Offset: 0

Views

Author

Robert Price, Mar 24 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 865; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

Formula

Conjectures from Chai Wah Wu, May 04 2024: (Start)
a(n) = a(n-2) + 256*a(n-8) - 256*a(n-10) for n > 36.
G.f.: (16384*x^36 + 2048*x^35 - 11264*x^34 - 2048*x^33 - 768*x^32 + 512*x^31 - 256*x^30 + 1536*x^29 - 4160*x^28 - 2056*x^27 + 44*x^26 + 8*x^25 + 3*x^24 - 2*x^23 + x^22 - 38*x^21 + 16*x^20 + 8*x^19 - 96*x^17 - 416*x^13 + 256*x^12 + 152*x^11 - x^10 + 358*x^9 - 127*x^8 + 90*x^7 + 32*x^6 + 24*x^5 + 7*x^4 + 5*x^3 + 2*x^2 + 1)/(256*x^10 - 256*x^8 - x^2 + 1). (End)