cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284314 Expansion of Product_{k>=0} (1 - x^(5*k+1)) in powers of x.

This page as a plain text file.
%I A284314 #13 Oct 09 2017 09:23:09
%S A284314 1,-1,0,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,3,-2,0,
%T A284314 0,-1,3,-3,1,0,-1,4,-4,1,0,-1,4,-5,2,0,-1,5,-7,3,0,-1,5,-8,5,-1,-1,6,
%U A284314 -10,6,-1,-1,6,-12,9,-2,-1,7,-14,11,-3,-1,7,-16,15,-5
%N A284314 Expansion of Product_{k>=0} (1 - x^(5*k+1)) in powers of x.
%H A284314 Seiichi Manyama, <a href="/A284314/b284314.txt">Table of n, a(n) for n = 0..10000</a>
%F A284314 a(n) = -(1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1.
%t A284314 CoefficientList[Series[Product[1 - x^(5k + 1), {k, 0, 100}], {x, 0, 100}], x] (* _Indranil Ghosh_, Mar 25 2017 *)
%o A284314 (PARI) Vec(prod(k=0, 100, 1 - x^(5*k + 1)) + O(x^101)) \\ _Indranil Ghosh_, Mar 25 2017
%Y A284314 Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), A284313 (m=4), this sequence (m=5).
%Y A284314 Cf. A280454, A284097.
%K A284314 sign
%O A284314 0,18
%A A284314 _Seiichi Manyama_, Mar 25 2017