This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284315 #16 Jan 20 2023 14:34:17 %S A284315 1,0,-1,0,0,-1,0,1,-1,0,1,-1,0,2,-1,-1,2,-1,-1,3,-1,-2,3,-1,-3,4,0,-4, %T A284315 4,0,-5,5,1,-7,5,2,-8,6,4,-10,5,5,-12,6,8,-14,5,10,-16,5,14,-19,3,17, %U A284315 -21,2,22,-23,-1,26,-26,-3,33,-28,-8,38,-30,-12,46,-32,-19 %N A284315 Expansion of Product_{k>=0} (1 - x^(3*k+2)) in powers of x. %H A284315 Seiichi Manyama, <a href="/A284315/b284315.txt">Table of n, a(n) for n = 0..10000</a> %F A284315 a(n) = -(1/n) * Sum_{k=1..n} A078182(k) * a(n-k), a(0) = 1. %t A284315 CoefficientList[Series[Product[1 - x^(3k + 2), {k, 0, 100}], {x, 0, 100}], x] (* _Indranil Ghosh_, Mar 25 2017 *) %o A284315 (PARI) Vec(prod(k=0, 100, 1 - x^(3*k+2)) + O(x^101)) \\ _Indranil Ghosh_, Mar 25 2017 %Y A284315 Cf. Product_{k>=0} (1 - x^(m*k+m-1)): A081362 (m=2), this sequence (m=3), A284316 (m=4), A284317 (m=5). %Y A284315 Cf. A078182, A262928. %K A284315 sign,look %O A284315 0,14 %A A284315 _Seiichi Manyama_, Mar 25 2017