cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284316 Expansion of Product_{k>=0} (1 - x^(4*k+3)) in powers of x.

This page as a plain text file.
%I A284316 #18 Jan 17 2023 15:01:12
%S A284316 1,0,0,-1,0,0,0,-1,0,0,1,-1,0,0,1,-1,0,0,2,-1,0,-1,2,-1,0,-1,3,-1,0,
%T A284316 -2,3,-1,0,-3,4,-1,1,-4,4,-1,1,-5,5,-1,2,-7,5,-1,3,-8,6,-1,5,-10,6,-2,
%U A284316 6,-12,7,-2,9,-14,7,-3,11,-16,8,-4,15,-19,8,-6,18,-21,9
%N A284316 Expansion of Product_{k>=0} (1 - x^(4*k+3)) in powers of x.
%H A284316 Seiichi Manyama, <a href="/A284316/b284316.txt">Table of n, a(n) for n = 0..10000</a>
%F A284316 a(n) = -(1/n)*Sum_{k=1..n} A050452(k)*a(n-k), a(0) = 1.
%F A284316 O.g.f.: Sum_{n >= 0} (-1)^n*x^(n*(2*n+1)) / Product_{k = 1..n} ( 1 - x^(4*k) ). Cf. A284313. - _Peter Bala_, Nov 28 2020
%t A284316 CoefficientList[Series[Product[1 - x^(4k + 3), {k, 0, 100}], {x, 0, 100}], x] (* _Indranil Ghosh_, Mar 25 2017 *)
%o A284316 (PARI) Vec(prod(k=0, 100, 1 - x^(4*k+3)) + O(x^101)) \\ _Indranil Ghosh_, Mar 25 2017
%Y A284316 Cf. Product_{k>=0} (1 - x^(m*k+m-1)): A081362 (m=2), A284315 (m=3), this sequence (m=4), A284317 (m=5).
%Y A284316 Cf. A050452, A147599, A284313, A111330.
%K A284316 sign,easy
%O A284316 0,19
%A A284316 _Seiichi Manyama_, Mar 25 2017