cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284343 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y <= z such that 2*x + y - z is either zero or a power of 8 (including 8^0 = 1).

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 1, 3, 2, 1, 3, 3, 2, 3, 5, 2, 3, 4, 6, 1, 3, 5, 1, 6, 1, 3, 7, 2, 2, 5, 6, 5, 6, 3, 6, 4, 1, 3, 4, 5, 4, 5, 7, 2, 3, 8, 6, 7, 3, 4, 8, 3, 2, 6, 3, 5, 7, 3, 8, 7, 2, 4, 10, 4, 4, 7, 9, 7, 2, 4, 2, 7, 3, 5, 11, 2, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 25 2017

Keywords

Comments

Conjecture: (i) For any c = 1,2,4, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y <= z such that c*(2*x+y-z) is either zero or a power of eight (including 8^0 = 1).
(ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that P(x,y,z,w) is either zero or a power of four (including 4^0 = 1), whenever P(x,y,z,w) is among the polynomials 2*x-y, x+y-z, x-y-z, x+y-2*z, 2*x+y-z, 2*x-y-z, 2*x-2*y-z, x+2*y-3*z, 2*x+2*y-2*z, 2*x+2*y-4*z, 3*x-2*y-z, x+3*y-3*z, 2*x+3*y-3*z, 4*x+2*y-2*z, 8*x+2*y-2*z, 2*(x-y)+z-w, 4*(x-y)+2*(z-w).
Part (i) of the conjecture is stronger than the first part of Conjecture 4.4 in the linked JNT paper (see also A273432).
Modifying the proofs of Theorem 1.1 and Theorem 1.2(i) in the linked JNT paper slightly, we see that for any a = 1,4 and m = 4,5,6 we can write each n = 0,1,2,... as a*x^m + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x is either zero or a power of two (including 2^0 = 1), and that for any b = 1,2 each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that b*(x-y) is either zero or a power of 4 (including 4^0 = 1).
Starts to differ from A273432 at n=197. - R. J. Mathar, May 25 2023

Examples

			a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 0 = 0 and 2*0 + 0 - 0 = 0.
a(5) = 1 since 5 = 1^2 + 0^2 + 2^2 + 0^2 with 0 < 2 and 2*1 + 0 - 2 = 0.
a(7) = 1 since 7 = 1^2 + 1^2 + 2^2 + 1^2 with 1 < 2 and 2*1 + 1 - 2 = 8^0.
a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 2 = 2 and 2*4 + 2 - 2 = 8.
a(138) = 1 since 138 = 3^2 + 5^2 + 10^2 + 2^2 with 5 < 10 and 2*3 + 5 - 10 = 8^0.
a(1832) = 1 since 1832 = 4^2 + 30^2 + 30^2 + 4^2 with 30 = 30 and 2*4 + 30 - 30 = 8.
a(2976) = 1 since 2976 = 20^2 + 16^2 + 48^2 + 4^2 with 16 < 48 and 2*20 + 16 - 48 = 8.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=n==0||(n>0&&IntegerQ[Log[8,n]]);
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&Pow[2x+y-z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[(n-x^2)/2]},{z,y,Sqrt[n-x^2-y^2]}];Print[n," ",r],{n,0,80}]