This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284352 #12 Feb 16 2025 08:33:43 %S A284352 1,10,111,1011,11111,101111,1111111,10111111,111111111,1011111111, %T A284352 11111111111,101111111111,1111111111111,10111111111111, %U A284352 111111111111111,1011111111111111,11111111111111111,101111111111111111,1111111111111111111,10111111111111111111 %N A284352 Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood. %C A284352 Initialized with a single black (ON) cell at stage zero. %D A284352 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A284352 Robert Price, <a href="/A284352/b284352.txt">Table of n, a(n) for n = 0..126</a> %H A284352 Robert Price, <a href="/A284352/a284352.tmp.txt">Diagrams of first 20 stages</a> %H A284352 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A284352 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A284352 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A284352 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A284352 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A284352 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A284352 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A284352 Conjectures from _Colin Barker_, Mar 26 2017: (Start) %F A284352 G.f.: (1 + 9*x + x^2) / ((1 - x)*(1 - 10*x)*(1 + 10*x)). %F A284352 a(n) = (-20 + 9*(-10)^n + 191*10^n)/180. %F A284352 a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) for n>2. %F A284352 (End) %t A284352 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}]; %t A284352 code = 899; stages = 128; %t A284352 rule = IntegerDigits[code, 2, 10]; %t A284352 g = 2 * stages + 1; (* Maximum size of grid *) %t A284352 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *) %t A284352 ca = a; %t A284352 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; %t A284352 PrependTo[ca, a]; %t A284352 (* Trim full grid to reflect growth by one cell at each stage *) %t A284352 k = (Length[ca[[1]]] + 1)/2; %t A284352 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}]; %t A284352 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}] %Y A284352 Cf. A284351, A284353, A284354. %K A284352 nonn,easy %O A284352 0,2 %A A284352 _Robert Price_, Mar 25 2017